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Abstract

Predictions about the evolution of the Internet of Things (IoT) in the next
years are optimistic. The number of interconnected devices will continue
to grow exponentially, as well as the amount of data that they report.

Part of this data will be generated by wireless sensor nodes organized
in Wireless Sensor Networks (WSNs) to transmit their measurements to
Gateways (GWs). However, wireless sensor nodes are mainly designed to
have low costs, which implies constrained memory and energy supplies,
and does not permit the streaming of measured data at high data rates.

Meanwhile, modern uses of WSNs rely on the knowledge acquired
by sensor nodes to trigger reactions in other systems, and sensed data
has become critical to avoid economic–and living–losses. Therefore, it
is important to optimize data transmissions in WSNs to support not only
a higher number of wireless sensor nodes but also a higher diversity of
sensed parameters.

Solutions for data aggregation and data compression have reduced
the number of gross transmissions, but they did not solve the problem of
transmitting measurements that do not convey knowledge to the WSNs’
managers. These solutions do not exploit the fact that, fortunately, WSNs
are asymmetric and, contrary to ordinary wireless sensor nodes, GWs
have an Internet connection with no critical computational, power or com-
munication limitations. Hence, GWs can run algorithms and process
amounts of data that wireless sensor nodes do not support, which permits
them to predict the data that will be measured.

This thesis extends a paradigm that exploits WSNs to the utmost: data
that can be predicted does not have to be transmitted.

First, we design a self-managing WSN architecture that adopts a stan-
dardized communication to integrate WSNs into data analysis services in
the cloud. To evaluate our idea in experiments, we implement the Data
Analytics for Sensors Dashboard (DAS-Dashboard) to control and op-
timize, using specialized cloud services, a WSN via the Internet. Our
experimental results show that the interconnection of remote components
does not imply a significant overhead and that the architecture is feasible
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in practice.
Then, relying on this architecture, we design a mechanism to adjust

the sensor nodes’ sampling intervals according to the changes observed
in the environment. The novelty of this mechanism is in the use of a
Reinforcement Learning (RL) technique called Q-Learning. Simulation
and experimental results show that this mechanism provides necessary
means to make a smart WSN with the capacity of self-optimizing.

As a result of hardware evolution, new wireless sensor nodes have ex-
tended memory and computing capabilities; and more sophisticated pre-
diction algorithms were adopted in sensor nodes. In response to that,
we analyze the benefits of incorporating the current state-of-the-art pre-
diction algorithms in WSNs. The results are promising: our simulation
results show that it is possible to eliminate WSN transmissions without
reducing the quality of the measurements provided in several sensor net-
work applications.

For the future generations of WSNs, we design a theoretical model for
characterizing the number of transmissions in WSNs, which can provide
reliable estimations about the efficiency of prediction-based data reduc-
tion methods. The new model will support the WSNs’ growth regarding
the number of sensor nodes in a single network and the quality of infor-
mation processed by their GWs.

The prediction-based strategies investigated in this thesis can impact
the present and the future of the IoT. Current WSNs can be optimized to
avoid unnecessary transmissions with the help of the cloud. Also, coming
generations of WSNs will be supported by our WSN transmission model
to adopt prediction algorithms and maintain strict control over the quality
of the reported data without being harmed by the adoption of a higher
number of sensor nodes; hence, collaborating to the IoT’s growth.
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Resumen

Las predicciones sobre la evolución del Internet of Things (IoT) en los
próximos años son optimistas. El número de dispositivos interconectados
continuará creciendo exponencialmente, ası́ como la cantidad de datos
generados.

Parte de estos datos serán generados por los nodos sensores
inalámbricos organizados en Redes de Sensores Inalámbricas (del inglés
Wireless Sensor Networks, o abreviado WSNs) para transmitir sus medi-
ciones a sus correspondientes Gateways (GWs). Sin embargo, los sen-
sores inalámbricos están diseñados principalmente para ser de bajo coste,
lo que implica recursos de memoria y de energı́a finitos, y no permite la
transmisión de los datos medidos a altas velocidades.

Mientras tanto, los usos actuales de las WSNs se basan en los
conocimientos adquiridos por los nodos sensores para desencadenar reac-
ciones en otros sistemas, de modo que estos datos se han convertido en
fundamentales para evitar pérdidas económicas–y de vidas. Por lo tanto,
es importante optimizar las transmisiones de datos en WSNs para soportar
no sólo un mayor número de nodos sensores inalámbricos, sino también
una mayor diversidad de parámetros detectados.

Las soluciones para la agregación y compresión de datos han reducido
el número de transmisiones brutas, pero no han resuelto el problema de la
transmisión de las mediciones que no llevan información útil a los admin-
istradores de las WSNs. Estas soluciones no explotan el hecho de que,
afortunadamente, las WSNs son asimétricas y, contrariamente a los no-
dos sensores inalámbricos habituales, los GWs tienen una conexión a In-
ternet sin limitaciones crı́ticas en términos computacionales, energéticos
o de comunicación. Por lo tanto, los GWs pueden ejecutar algoritmos
y procesar grandes volúmenes de datos no ejecutables en los sensores
inalámbricos, lo que les permite predecir los datos que se van a medir.

Esta tesis extiende un paradigma que explota las WSNs al máximo:
los datos que pueden ser predichos no tienen que ser transmitidos.

En primer lugar, diseñamos una arquitectura de autogestión para
WSNs que adopta una comunicación estandarizada para integrar las
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WSNs con los servicios de análisis de datos en la nube. Para evaluar
nuestra idea de forma experimental, se ha implementado el Data Analytics
for Sensors Dashboard (DAS-Dashboard) para controlar y optimizar, me-
diante servicios especializados en la nube, una WSN a través de Inter-
net. Nuestros resultados experimentales muestran que la interconexión
de componentes remotos no implica una sobrecarga significativa y que la
arquitectura resultante es factible en la práctica.

Basándonos en esta arquitectura, diseñamos un mecanismo para ajus-
tar los intervalos de muestreo de los nodos sensores a partir de los cambios
observados en el medio. La novedad de este mecanismo está en el uso de
una técnica de Reinforcement Learning (RL) llamada Q-Learning. Los
resultados de la simulación y los experimentos muestran que este mecan-
ismo proporciona los medios necesarios para hacer una WSN inteligente
con capacidad de auto-optimización.

Como resultado de la evolución hardware, nuevos nodos sensores
inalámbricos han extendido las capacidades de memoria y de cómputo;
como consecuencia, se ha adoptado algoritmos más sofisticados de
predicción en los nodos sensores. En respuesta a ello, analizamos los
beneficios de la incorporación de los algoritmos de predicción actuales
del estado del arte en WSNs. Los resultados de nuestras simulaciones son
prometedores: estos demuestran que en varias aplicaciones de redes de
sensores es posible eliminar algunas transmisiones sin reducir la calidad
de las medidas proporcionadas.

Para las futuras generaciones de WSNs, diseñamos un modelo teórico
para caracterizar el número de transmisiones en WSNs, que pueden pro-
porcionar estimaciones fiables acerca de la eficiencia de los métodos de
reducción de datos basados en predicciones. El nuevo modelo permite el
crecimiento de las WSNs en relación al número de nodos sensores en una
sola red y la calidad de la información procesada por el GW.

Las estrategias basadas en la predicción de datos investigadas en esta
tesis pueden tener un impacto en el presente y el futuro del IoT. Las WSNs
actuales pueden ser optimizadas para evitar transmisiones innecesarias
con la ayuda del cloud. Además, las nuevas generaciones de WSNs es-
tarán respaldadas por nuestro modelo de transmisión para adoptar algorit-
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mos de predicción y mantener un estricto control sobre la calidad de los
datos notificados sin ser dañadas por la adopción de un mayor número de
nodos sensores; por consiguiente, colaborando en el crecimiento del IoT.
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Chapter 1

INTRODUCTION

Where any form of terrestrial life exists it is safe to assume there
will be sensors deployed close by1.

According to Gartner [2], the number of interconnected devices in the
Internet of Things (IoT) will triple in the next few years, reaching 13.5
billion in 2020. Cameras, accelerometers, thermometers, barometers, fire
detectors and air quality monitors are only some examples of sensors that
can be found in wireless sensor nodes used to monitor environments and
track objects.

Indeed, wireless sensor nodes are taken into account in Gartner’s es-
timates as they are also considered “Things” that form the IoT. However,
in practice, wireless sensor nodes communicate only among themselves
in Wireless Sensor Networks (WSNs) to report sensed data to Gateways
(GWs). A typical GW consists in a wireless sensor node connected to
a workstation (e.g., via USB) with Internet access; hence, usually, GWs
can interact with remote systems that compute, analyze and extract valu-
able information from the collected datasets. On the other hand, ordinary
wireless sensor nodes can neither process high complexity algorithms nor

1In allusion to “Where any form of terrestrial life exists it is safe to assume there will
be spiders living close by.” [1]
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communicate directly with other Internet devices without the help of the
GWs, due to their constrained computing power and hardware limitations.

Thanks to this limited communication between sensor nodes and the
external world, the WSNs’ growth can be described by the increasing
number of wireless sensor nodes measuring and reporting data to GWs,
and by the diversity of data types transmitted in WSNs. Modern appli-
cations of WSNs do not simply monitor changes in the environment any-
more; they also trigger reactions to these changes. For example, in agri-
culture, sensed data can be used to apply pesticides after detecting that
the number of insects exceeded a certain threshold [3]. Such a threshold,
in turn, may vary according to the season or get affected by temperature
and relative humidity changes during the days. In these applications, sen-
sor nodes may need a high number of transmissions to communicate the
number of insects, temperature, and relative humidity. If the WSN cannot
handle all transmissions that sensor nodes make, it will collapse and end
up in significant economic losses.

In other cases, losses can go beyond the ecological and economic am-
bits. For example, structural health monitoring for aircraft can include
engine control systems that rely on enhanced data analysis to detect acci-
dents, and report unexplained phenomena to people responsible for main-
taining their safety and healthy conditions [4]. Extended data analysis
require, in comparison to the simplest monitoring tasks, more parameters
and a higher amount of informative data. Therefore, in these cases, more
sensor nodes transmitting higher amounts of data might collapse the WSN
and provoke accidents resulting in losses of lives.

These situations help us to understand that WSNs are data-oriented
networks, i.e., the data that sensor nodes can produce is their most valu-
able asset [5]. Hence, as typical wireless sensor nodes have comput-
ing power constraints and are mainly supplied by capacity-constrained
batteries, most of the works about WSNs focus on optimizing their en-
ergy consumption [6, 7]. In fact, efforts to reduce energy consumption in
WSNs provide efficient solutions at different levels, such as Medium Ac-
cess Control (MAC) protocols [8, 9], routing schemes [10, 11], and data
compression [12, 13]. Fortunately, there are promising advances in en-
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ergy supply methods for sensor nodes, including energy harvesting [14]
and wireless power transfer [15]. These techniques facilitate the design
of scalable methods to refill sensor nodes’ batteries. Therefore, also con-
sidering the recent discoveries regarding batteries that could be charged
hundreds of thousands of times without losing capacity [16], wireless sen-
sor nodes’ energy constraint may be–sooner or later–overcome.

Meanwhile, although energy limitations tend to disappear, the
medium access has been named as one of the key challenges in the next
generations of wireless networks, due to the increase in the number of
wireless devices and traffic profiles [17]. In other words, the access to the
data produced by neighboring sensor nodes might remain as an issue in
the next generations of WSNs. Hence, if the number of sensor data trans-
missions follows the growth in the number of devices, the IoT will not
be able to support all wireless communications. De facto, this situation
raises a dilemma in WSNs because attempting to deliver more of their
most valuable asset can, in fact, reduce their throughput. In conclusion,
the spectrum scarcity is a candidate for becoming the greatest obstacle in
the WSNs’ growth thanks to the number of interconnected devices and
data produced.

To workaround such a limitation, it would be necessary a deep im-
provement in the wireless sensor nodes’ architecture, which would in-
clude new radio antennas, more powerful Microcontroller Units (MCUs),
and extended memory capacities. On the other hand, the resulting costs
of the new hardware might not be compatible with the mass adoption of
sensor nodes.

Given that, an interesting question to ask, and which shall be ad-
dressed in this thesis, is:

Could we build smart WSNs that optimize their transmissions?

To answer this question, we must investigate other problems before-
hand. First, what does a WSN need to become smart and optimize itself ?
Second, how can sensor data transmissions be optimized?

To become smart and optimize itself, a WSN needs enough knowl-
edge about the environment, which can be produced by other systems (in-
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cluding other WSNs). To obtain this information directly, sensor nodes
might be programmed to access data from other devices external to their
WSNs, such as other sensor nodes, cloud servers, and smartphones. This
option, however, is not feasible in practice, because it would require a
standard data interchange format for measurements, extra computing time
in sensor nodes and occasionally new hardware to overhear the medium.
Moreover, sensor nodes would need other sources of knowledge to verify
the trust of their neighbors’ data. In fact, all of these problems have al-
ready been addressed in Internet applications and are not compatible with
WSNs’ purposes.

An alternative solution to make a WSN optimize itself is to rely
on GWs, exploiting their Internet connection and the fact that they do
have neither critical computational, power nor communication limita-
tions [18, 19]. GWs can access external information from several sources
and provide direct access to WSNs’ managers, who may intervene in the
actions taken in the WSNs.

To optimize the number of transmissions in a WSN, it is important to
observe the frequency of data generation and the data length. Using dis-
tributed mechanisms, a WSN can update its routing tables and reduce the
overall number of transmissions, or adopt self-organization schemes to
find clusters and avoid long-distance transmissions [20]. At this moment,
there are several mechanisms to improve WSNs’ transmissions and, even
though there is no one-size-fits-all solution, many combinations have been
tested and extended to work properly in several scenarios, such as the B-
MAC [8], the Collection Tree Protocols (CTPs) [21], and the Low-Energy
Adaptive Clustering Hierarchy (LEACH) [22] methods.

It is important to highlight, however, that the effort to find the best
routing algorithm that can successfully coordinate the medium access is
worthless if the data transmitted by the sensor nodes does not convey
knowledge to the WSNs’ managers. It is not only important to use sen-
sor nodes to generate relevant knowledge, but it is also critical to main-
tain such a relevance during the WSNs’ operation. The relevance of the
knowledge acquired by sensor nodes depends mainly on the frequency
that the data is generated and transmitted, and it can be wasted due to
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long delays in the delivery process.
Data-driven mechanisms can rely on the foundation provided by com-

binations of protocols at the lower layers, such as MAC protocols and
routing mechanisms. For instance, relying on lower layer solutions, exist-
ing data aggregation and data compression mechanisms can respectively
reduce up to 40% and 50% the number of transmissions without affecting
the data throughput [23, 24].

Nonetheless, in fact, data aggregation and data compression are ex-
amples of techniques that do not consider the most typical characteristics
of WSNs: (i) differently from traditional (cabled and wireless) networks,
WSNs are asymmetric, i.e., the computing power of sensor nodes is ex-
tremely smaller than that of workstations and servers used for data pro-
cessing; and (ii) data collected and transmitted by sensor nodes may be
predicted using basic algorithms. For instance, using such algorithms,
GWs can rely on several sources of knowledge to estimate the data mea-
sured by sensor nodes. Meanwhile, sensor nodes can compute the same
estimations, verify locally if the GW’s predictions are accurate, and trans-
mit their measurements only in cases when predictions fail. Therefore,
adopting data prediction in WSNs can optimize transmissions in a way
that neither data compression nor data aggregation can: eliminating the
necessity of communicating the data.

Most of the WSNs predict sensed data, even though this is not explic-
itly addressed in their specification. It happens, for example, when a sen-
sor measurement cannot be sampled on demand and the value informed to
a WSN’s manager is the last measurement transmitted by a sensor node.
This is the same technique used by the Constant prediction method: the
system simply assumes that there was no change in the environment after
the last observation [25]. Sensor nodes, in turn, can exploit this behavior
to avoid unnecessary transmissions by transmitting a measurement only
if its value differs by more than a fixed tolerance threshold from the last
value transmitted.

In this work, we concentrate our efforts to overcome the paradigm of
using sensor networks to measure and transmit as much raw data as pos-
sible. Our goal is to optimize the data analysis while taking into account
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the typical limitations of WSNs. Thus, we focus on using data predictions
as a means of reducing the number of transmissions without affecting the
quality of the measurements made by sensor nodes. To achieve our goal,
we rely on the WSNs’ asymmetric capacities: sensor nodes are closer to
the data’s sources, and GWs can communicate with cloud services that
compute complex algorithms for data analysis.

1.1 Objectives
The primary objective of this work is to facilitate the optimization of sen-
sor networks at the application layer. To achieve this goal, we will inves-
tigate scalable optimization methods that rely upon: (i) tools that facili-
tate sensor data acquisition, storage, and management; and (ii) statistical
methods and models for data analysis.

These optimization methods will provide means for expanding WSNs
both in the number of sensor nodes and applications, besides facilitat-
ing the inter-WSNs communication. To achieve that, we must provide
a sufficiently solid basis on which future applications can rely to create
more complex systems that interact with the environment and manage
themselves. To achieve our primary goal, we also accomplish other steps
during the research process:

1. Investigate the state of the art and collect information about
how data prediction has been incorporated into WSNs. As
a consequence, this investigation will show how the architecture
schemes used in WSNs can better exploit the most recent methods
used by data scientists for inferring and forecasting values.

2. Evaluate in practice the benefits that cloud services give to
WSNs, extending sensor nodes’ computational power and in-
corporating WSNs into self-managing environments. As cloud
services may perform complex algorithms that are incompatible
with ordinary wireless sensor nodes (due to their constrained com-
puting capacity), their benefits may transcend currently known lev-
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els of WSN optimization, for example, avoiding a high volume of
unnecessary transmissions.

3. Explore algorithms for predictions under the constraints ob-
served in current wireless sensor nodes, and study their adop-
tion in next generations of WSNs, considering their intrinsic
hardware evolution. This study will provide concrete evidence of
predictions’ effectiveness and their potential for the coming gener-
ations of sensor nodes and WSNs.

4. Design a model for characterizing the number of transmissions
in sensor networks, such that it will provide reliable estimations
about the efficiency of prediction-based data reduction meth-
ods. The new model will support the WSNs’ growth regarding the
number of sensor nodes in a single network and the quality of data
analysis in their GWs.

1.2 Contributions
The main contribution of this thesis is the integration of mechanisms
for fine-tuning WSNs with the most powerful Artificial Intelligence (AI)
techniques. This connection can empower WSNs with cloud services, im-
prove the quality of their data, and open space for new business opportu-
nities. For the current WSNs, we focused on a self-managing architecture
that supports existing frameworks and technologies used in sensor nodes.
For future generations of WSNs, we deliver a theoretical analysis about
the use of data prediction, considering sensor nodes’ hardware evolution
and sensor data quality.

We begin proposing a self-managing WSN architecture that integrates
cloud computing, data analysis, and sensor networks. In the real imple-
mentation described in Chapter 2, we adopt a standardized communica-
tion for reporting sensed data and communicating remote decisions. Re-
sults show that the interconnection of remote components does not imply
a significant overhead and is feasible in practice.
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As existing wireless sensor nodes have strict memory and computing
power constraints, our first contributions–for existing technologies–avoid
extra computation in sensor nodes. Using an Reinforcement Learning
(RL) technique called Q-Learning, we design a mechanism to adjust the
sensor nodes’ sampling intervals according to the changes observed in the
environment. In Chapter 3, we describe our simulations and discuss the
experimental results of this mechanism on the self-managing architecture
proposed beforehand.

After observing the real benefits of a Simple Prediction Scheme
(SPS), in Chapter 4, we analyze the accuracy that the current state-of-the-
art algorithms for predictions have when applied to sensed data. We show
that adopting sophisticated algorithms in sensor nodes makes Dual Pre-
diction Schemes (DPSs) promising: using these algorithms in our simula-
tions, we observe that it is possible to reduce the number of transmissions
without reducing the quality of the measurements provided by WSNs in
different sensor applications.

Foreseeing the sensor nodes’ hardware evolution and new algorithms
for predictions, we design a WSN transmission model in Chapter 5. It can
be used to plan WSNs, considering their sensor nodes’ hardware capabil-
ities and configuration parameters, such as transmission ranges and sam-
pling rates. Based on this model, we make a theoretical study to observe
how the number of transmissions is affected by the predictions’ accuracy
and the correlation between data collected by neighbor sensor nodes. Our
analysis shows that adopting a prediction-based and a data aggregation
scheme can reduce the number of transmissions by up to nearly 92%.
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Chapter 2

CLOUD EMPOWERED
SELF-MANAGING WSNS

The IoT is composed of several smart devices with sensors; these devices
collect, transmit and process environmental parameters, such as tempera-
ture, relative humidity and solar radiation. Finally, all this information is
shared via the Internet with other “things”.

In comparison with traditional WSNs, smart devices can be more
powerful and perform high-complexity algorithms, interact with humans,
provide machine-to-machine communication and also connect to cloud
services to extend their computing power. Thus, thanks to extended com-
munication and computing capabilities, household appliances, machines,
personal devices and living beings can self-configure and self-manage re-
sources in reaction to external phenomena that impact their operation.

Fortunately, rather than just forwarding data periodically reported by
sensor nodes, GWs can become the connection point between WSNs and
IoT environments; hence, WSNs can exploit cloud services for optimizing
their operation [26]. Among several cloud services, data analysis can be
ranked as the most relevant for WSNs, given the sensor nodes’ dedication
to measuring and reporting information about the external world. The
ease of access to data analysis services is a twofold facility. First, because
it provides information that cannot be computed in WSNs, due to the
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constrained sensor nodes’ computing power and limited access to external
resources. Second, because analyzing data at WSN runtime facilitates the
control over the quality of the data provided to WSNs’ managers and the
WSNs fine-tuning.

Indeed, fine-tuning a WSN requires appropriate management to detect
and handle several problems at different levels. Also, each WSN has its
requirements and particularities, such as maximum delay to deliver the
data and tolerance about node failures and unreliable transmissions. For
instance, if a sensor node’s radio is experiencing a temporary interference,
its transmissions will suffer occasional errors. Then, if the WSN toler-
ates packet losses, the routing table may be maintained to avoid the over-
head communication that would provoke new transmissions and probably
worsen the data delivery. Since the final decision affects the data collec-
tion, managing multiple WSNs that may co-exist in an IoT environment
would require several configurations and parallel tasks.

Besides that, as data cannot be properly manipulated in WSNs, a
proper data analysis manager must be able to execute several instances of
analysis over different datasets at the same time. However, even simple
linear regression algorithms can consume nearly 30 times more memory
than the size of the dataset [27]. Therefore, if all the data computation
is centralized in a single server, it could overload and collapse a server
that must handle dozens (occasionally hundreds) of sensor nodes at the
same time. Hence, a scalable solution that integrates WSNs in IoT envi-
ronments must exploit specialized knowledge about the advantages and
disadvantages in WSNs fine-tuning and data handling.

In this Chapter, we describe the design and the deployment of a scal-
able architecture that integrates solutions at different layers to incorpo-
rate WSNs in IoT environments and exploit cloud services to work au-
tonomously. As part of this architecture, we describe the design and
implementation of two other components: (i) a dashboard that provides
means for collecting, storing and publishing data transmitted by wireless
sensor nodes; and (ii) a data analytics server that supports several types
of data analysis algorithms and handles data collected by WSNs. Finally,
we integrate an existing solution for WSN application and resource man-
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Figure 2.1: The self-managing architecture for WSNs.

agement. The result is a self-managing architecture that controls WSNs
based on real-time data analysis, which is shown in Figure 2.1.

2.1 A self-managing architecture

The architecture proposed in this work aims for scalability and relies on
the power of shifting most of the computation to the cloud. It fits the main
principles of data science concerning sensed data: its collection; descrip-
tion; storage; maintenance; discovery; visualization; and analysis. The
Data Analytics for Sensors Dashboard (DAS-Dashboard) is used to dele-
gate the WSNs’ management and the data analysis to appropriate mech-
anisms that may perform their operations remotely in the cloud. As the
DAS-Dashboard stores and publishes collected sensed data, it is possible
to visualize measurements and other collected values, as well as repro-

11



duce IoT scenarios to optimize data acquisition and its further analysis.
Finally, a Data Analytics Server supports different data analytics tools and
algorithms that can optimize the data collection regarding the quality of
the measurements provided by the WSNs.

IoT environments have an information flow that extends the standard
WSNs’ data collection, which permits WSNs’ operation to be improved
based on data analysis executed at runtime. The WISEBED project
has already addressed the need of a shared platform for programming
WSNs and collecting data from sensor nodes [28]. In that project, several
testbeds were deployed, and remote users were able to program sensor
nodes and run experiments to prove concepts modeled in simulations.
That solution, however, did not integrate tools for remote data analysis
and real-time WSN optimization.

More recently, a new architecture was proposed to integrate WSNs
in IoT environments [29]. There, a central server communicates with
sensor nodes and receives their statistics, which are analyzed by a third-
party tool every hour. Based on the data analysis, the central server can
react to dynamic changes in network conditions and provide flexibility
to the WSN, through remote reconfiguration of the sensor nodes. As a
drawback, that architecture may face limitations to support several WSNs
simultaneously, because the management in the central server is highly
coupled. In short, the server must have installed the same Operating Sys-
tem (OS) used in the sensor nodes, besides hosting the database (DB) to
store collected data, and the tool used for data analysis. Hence, that archi-
tecture empowers WSNs with Internet services, but it is bounded by the
capacity of the central server to scale up and integrate many WSNs, data
analytics tools and provide simultaneous access to several remote WSNs’
managers.

2.1.1 Structure of the proposed architecture

We consider a typical IoT environment composed by several WSNs with
ordinary wireless sensor nodes reporting to predetermined sinks, named
as Gateways (GWs) in Figure 2.1. The proposed architecture is centered
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in the DAS-Dashboard and consists of interconnected components that
can exchange information with trusted entities, eventually from different
domains. The components of this architecture are:

Wireless sensor nodes

Taking advantage of their proximity to the data origin, they perform de-
fault sensing tasks in their deployment area and transmit their measure-
ments via radio to a GW.

Gateway

They forward the gathered information to the central server and dis-
seminate occasional instructions and updates to wireless sensor nodes.
GWs are the link between ordinary wireless sensor nodes and the DAS-
Dashboard, using a point-to-point connection over the Internet or a local
network.

Data Analytics for Sensors Dashboard (DAS-Dashboard)

The central component of this architecture has three primary responsibili-
ties: collecting, storing and publishing data transmitted by wireless sensor
nodes. The ability to collect data requires direct communication with the
WSNs and is fundamental for the other two responsibilities. Storing the
collected data in a DB allows further access to historical information, be-
sides providing data visualization to WSNs’ managers and other users.
Finally, communicating data to other systems allows the DAS-Dashboard
to outsource data processing, which may involve filtering and analyzing
the collected data, besides predicting future measurements.

Data Analytics Server

The Data Analytics Server can process computationally expensive real-
time analysis over data. To do that, it can rely on external data resources,
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such as public services and other DBs on the Internet. Indeed, tasks pro-
cessed by the Data Analysis Server could not be assigned to sensor nodes,
due to their constrained hardware and limited communication with exter-
nal sources of knowledge.

2.1.2 Main data flow

Supported by Transmission Control Protocol (TCP) connections estab-
lished among different components, each component of this architecture
can be moved to the cloud and become remotely reachable. Such an ac-
cessibility permits WSNs to interact with other WSNs, communicate with
other systems and simultaneously serve several users.

As detailed in Figure 2.2, first, sensor nodes must report data to their
respective GW, which is connected to the DAS-Dashboard via the Inter-
net. The data provided by sensor nodes can be, for example, their mea-
surements or statistics about network conditions, such as delays, packet
losses, and data throughput. After receiving the reported values, a Data
Analytics Server may generate a report and recommend the most proper
changes to the WSN’s operation. The data analysis can rely on complex
computations to extract knowledge from the collected data. Optionally,
the resulting environmental analysis can be offered to systems external to
the WSN at a certain cost [30].

Finally, sensor nodes can be updated to adjust their tasks according
to the results of the data analysis. Thanks to this architecture, the data
analysis can be delivered as a service to WSNs, such that sensor nodes
will be able to apply the knowledge in their favor, e.g., changing their
operation to report measurements more often and detail the variations in
the environment.

2.2 Applications of the architecture

As mentioned before, WSNs are data-oriented, i.e., the sensed data is
their most valuable asset. Hence, it is common to rely on analysis of the
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(a) Step 1. Sensors perform their default sensing
tasks, before transmitting their measurements via ra-
dio to GWs. Data is reported to the DAS-Dashboard
and stored in the DB for further access.

DAS-Dashboard
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(b) Step 2. Measurements received by the DAS-
Dashboard are communicated to the Data Analytics
Server. The Data Analytics Server performs the data
analysis to infer whether a sensor is gathering infor-
mative data or not.

DAS-Dashboard
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Data Analytics 
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(c) Step 3. The Data Analytics Server transmits to
the DAS-Dashboard new plans for the WSN, de-
pending on the application type. These plans may be
linked with network details (such as sensor nodes’
positions) and can rely on external factors (such as
the time of the day).

DAS-Dashboard
Server

DB

 

Gateway

(d) Step 4. At this point, the DAS-Dashboard
announces the recommendations received from the
Data Analytics Server. Then, sensor nodes are re-
programmed according to the instructions commu-
nicated to their GW.

Figure 2.2: The self-managing architecture in detail.
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collected information to take further actions, and the proposed architec-
ture facilitates this process. There is a vast number of ways to exploit the
proposed architecture, from optimizing existing WSNs to starting a new
business focused on sensor data. These applications can involve differ-
ent algorithms for data analysis, new modules that can be attached to the
DAS-Dashboard, or algorithms that can be implemented in sensor nodes.
In the following, we highlight some examples of ways to exploit this ar-
chitecture.

2.2.1 Multi-scope Integration

Data analysis algorithms can be substituted by AI techniques that eval-
uate historical trends and trigger actions, activate machines or commu-
nicate with other systems according to pre-defined policies. For exam-
ple, recommendations generated through data analysis can be targeted to
WSNs’ managers that would take manual actions, such as adding new
sensor nodes or replacing existing ones.

2.2.2 Sensing as a Service

If a user management layer is attached to the DAS-Dashboard back-end,
it will facilitate the identified communication with other systems and al-
low the information sharing, creating a new business model that offers the
information retrieved by sensor nodes as a service. For instance, WSNs
can establish data-sharing agreements involving monetary compensations
for future cooperation and use shared data from one or more WSNs to op-
timize another WSN’s performance, after analyzing and evaluating how
the environment is changing at a precise moment. Alternatively, users
may pay for measurements made in a particular region. Meanwhile, data
analytics algorithms can improve the resource utilization and offer confi-
dence intervals to estimated values computed locally.
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2.2.3 Prediction-based data reduction
For a while, prediction algorithms have been underexploited in WSNs, be-
cause higher complexity algorithms were thought to be unsuitable for sen-
sor nodes [31]. More recently, real deployments incorporated advanced
forecasting algorithms [32] and other AI techniques [33], challenging
such an assumption. As a consequence, data mining and other machine
learning techniques started to be used to find patterns in the sensed data,
improving its collection and delivery [34]. In summary, while machine
learning techniques rely on their ability of learning and evolving their
predictions in response to changes in the environment, other prediction-
based methods may use traditional time series algorithms that depend on
the statistics of the studied data to make predictions.

In the proposed architecture, the Data Analytics Server can compute
prediction algorithms that will optimize the data transmissions. Thus,
predictions can be made only in the Data Analytics Server, as proposed
by SPSs, or also in the sensor nodes, as proposed by DPSs.

Single Prediction Schemes

In SPSs, predictions are made in a single point of the network, which can
be either close to the origin of the data (in sensor nodes) or close to the
data collection point (in GWs). For instance, the Data Analytics Server
can predict the data measured by sensor nodes and decide when the GWs
must pull more measurements, based on the reliability of the predictions.
Alternatively, sensor nodes can predict changes in their surroundings to
avoid unnecessary measurements and–consequently–their transmissions.
The latter alternative is especially beneficial if a sensor node spends more
energy to sample the environment than to predict the future measure-
ments, which usually does not happen with wireless sensor nodes that
monitor temperature, relative humidity, and other environmental parame-
ters [6].

In the proposed architecture, as GWs are connected to the cloud and
have with higher computational power and energy availability, they can
have access to predictions and take important decisions about the WSNs’
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operation without compromising the quality of the information provided
by the measurements [35]. Meanwhile, a conservative strategy is adopted
in sensor nodes, which become merely responsible for their primary tasks,
i.e., measuring environmental parameters and transmitting the raw data
collected by their sensors.

Dual Prediction Schemes

In DPSs, predictions will be simultaneously made in the GW and sensor
nodes. The general idea behind such mechanisms is that sensor nodes
can produce the same “a priori” knowledge than the GW is, but sensor
nodes can locally check the predictions’ accuracy and avoid unnecessary
transmissions. As shown in Figure 2.3, the same predictions are made
in the sensor node and the GW. Then, every time the sensor node mea-
sures a value that falls outside an acceptance threshold defined for the
predictions (as represented by the first and the third measurements in Fig-
ure 2.4), it must transmit the real value to the GW, which substitutes the
values locally predicted. Hence, sensor nodes can consume fewer energy
resources and avoid unnecessary transmissions, because measurements
will be transmitted to the GW only when the predictions are not suffi-
ciently accurate.

2.3 Experimental deployment

To experiment this architecture, we deployed a WSN with TelosB
motes [36]. The DAS-Dashboard has been implemented and deployed in
a well-dimensioned machine without energy or performance constraints,
and with reliable Internet connection and direct access to the WSN’s
GW [37]. During 4.5 days, the room-temperature data was collected us-
ing four wireless sensor nodes placed in an office, as shown in Figure 2.5.
We explain and discuss the experimental deployment in the following.
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Figure 2.5: Sensor nodes’ positions in the office.

2.3.1 Adopting a WSN manager

Wireless sensor nodes are typically close to the data origin and have
constrained computing capabilities to store and process information. In
homogeneous WSNs with similar wireless sensor nodes (regarding their
software and hardware technologies), each sensor node may have differ-
ent configurations, according to its location and measurements’ relevance.
In heterogeneous WSNs, sensor nodes may differ in more ways, such as
computing capabilities, OSs, and clustering roles. Because of these par-
ticularities, addressing the architecture’s scalability and aiming for simul-
taneously controlling multiple WSNs require a framework that can avoid
resource underutilization and handle eventual changes in WSNs’ topol-
ogy. These aspects facilitate sensor nodes (re)placement and favor the
expansion and evolution of WSNs, boosted by advances in software and
hardware solutions.

TinyDB [38] is a framework that allows sensor nodes to be queried to
measure environmental parameters, such as temperature and relative hu-
midity, periodically. That is, given a set of queries, TinyDB can analyze
and optimize the use of the WSN’s resources, shortening delivery routes
and reducing the overall energy consumption. However, even though
TinyDB considers the sensor nodes’ energy consumption to decide for
the most suitable execution plan, it does not adapt to topology changes
that may also impact the routing and the end-to-end delays in the data
delivering, which does not favor the scalability of WSNs.

Similar to TinyDB, DIstributed Self-Organizing NEtwork manage-
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ment (DISON) [39] is a framework that permits WSNs to self-organize,
reacting to changes in the topology and optimizing the overall energy
consumption. However, DISON forces each sensor node to reconfigure
its operations according to its resources and the network state, which may
become an overhead in large WSNs.

WSN Application development and Resource Management (WARM)

The architecture proposed in this work is focused on supporting several
sensor node types and tasks, while reducing the management control at
the most. The scalability of this system can be provided by a frame-
work that abstracts sensor nodes at the application layer and reduces
management tasks, such as the WSN Application development and Re-
source Management (WARM) framework [40]. WARM relies on Soft-
ware Defined Networking (SDN) features to simplify the development
and resource management for WSN applications. An SDN controller im-
plemented in the sensor nodes is responsible for dealing with topology
changes and exploring their resources at the best. To achieve that, the
SDN controller abstracts the control and data layers [41], which facilitates
the adoption of low-level tasks in the format of sensor node applications
that can be easily configured. Thus, to meet the scalability requirements
described above, WARM was adopted as the WSN manager in our ex-
perimental deployment. Figure 2.6 shows the WARM’s architecture in
detail.

To control the WSN, a sensor node with the WARM controller in-
stalled is responsible for receiving, via serial port, any configuration and
management commands from the WSN’s managers. These commands
are further translated to the format used by the SDN controller. The
WARM controller also communicates eventual notifications from sensor
nodes to the WSN’s managers, such as new sensor nodes associations and
acknowledgments after updates.

To configure and manage WSN applications, WARM provides a
hardware-independent application layer, which makes wireless sensor
nodes’ particularities transparent to any component external to the WSN.
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Figure 2.6: The WARMs’s architecture in the WSN.

Meanwhile, sensor nodes can still be controlled via an interface that pro-
vides means to retrieve their statuses and to schedule tasks, such as sens-
ing environmental parameters or processing collected data periodically. In
practice, to program a sensor node to sense the environment, the WSN’s
managers need only to inform which node will receive the data and the
period between consecutive measurements. WARM also specifies inter-
faces to support new applications that can be further designed by WSNs’
managers.

In conclusion, WSNs’ managers do not need to spend their time
adjusting WSNs with the best set of parameters, configuring protocols
that may enhance their power savings or (re-)synchronizing network
components after replacing sensor nodes, because all of these tasks are
automatically–and properly–guaranteed by WARM.

2.3.2 Implementing the DAS-Dashboard
WSNs’ managers may adopt different strategies to monitor and analyze
all the information retrieved by their WSNs. Storing collected data in
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DBs allows further access to historical information, besides providing
data visualization to other systems. If the DB is connected to the Internet,
collected data can be available to remote users, overcoming physical lim-
itations and providing access to external systems that may independently
process such information.

As a drawback, setting up a new DB for each WSN implies over-
head, because their schema must be designed, servers must be configured,
and the communication with the WSN must be properly established. A
standard storage medium can make the data handling transparent to the
WSNs’ managers, remove the overhead to customize data formats and fa-
cilitate the communication with other systems. As a consequence, WSNs’
managers can outsource the data processing to systems that filter and an-
alyze the collected data, and, especially, predict future measurements.

The DAS-Dashboard [42] was designed and implemented to commu-
nicate with WSNs to collect, store and publish: (i) values reported by sen-
sor nodes; and (ii) recommendations generated by external data analysis
servers. To store the data, a PostgreSQL DB server was connected to the
system’s back-end, allowing further access to historical information. The
data input is handled by the back-end, implemented in Sails.js [43], which
facilitates the creation of Application Programming Interfaces (APIs) to
manage the insertion of new information, and provides further access, on
demand, via Hypertext Transfer Protocol (HTTP) Requests. The use of
APIs allows the communication among different servers and also guaran-
tees the loose coupling with the front-end. The front-end, implemented
in AngularJS [44], provides data visualization to WSNs’ managers and
remote users via the Internet.

Finally, the DAS-Dashboard guarantees that the data inserted in the
DB is communicated via socket connections in the form of events. Thus,
external servers can be registered and receive updates about a WSN via
the Internet. Establishing standards for data insertion (API requests) and
data publishing (socket connections) allows the DAS-Dashboard to inte-
grate with Big Data services and update the operation of the sensor nodes
according to the data that they have reported.

23



2.3.3 Implementing the Data Analytics Server
As explained before, typical wireless sensor nodes have constrained mem-
ory and computing power, besides limited communication with external
networks. Therefore, they do not have enough capacity to store mea-
surements or execute high-complexity algorithms to analyze the environ-
ment’s evolution and appropriately optimize their data collection. For
example, a sensor node could use its data to forecast if it is going to rain
and therefore report more often to detail an abrupt change in temperature
that would occasionally happen.

Specialized tools, such as the Riverbed Modeler [45], can commu-
nicate with the DAS-Dashboard and receive network statistics, such as
end-to-end delays, packet arrival times and transmission times. Later, an
optimization plan may be generated, based on simulation results obtained
in parallel to the WSN’s operation. Alternatively, as the DAS-Dashboard
provides sufficient tools to store and publish reported data, it could be
possible to analyze WSNs’ data using public APIs, such as the Google
Prediction [46] and Amazon Machine Learning Prediction services [47].

In this work, a customized Data Analytics Server was implemented
in R [48]. It can perform different types of data analysis and recommen-
dations, occasionally relying on external data resources, such as public
services and other DBs on the Internet. Based on the data analysis re-
sults, this server can generate two types of recommendations for sensor
nodes: (i) sampling intervals, in which an SPS is used to define the time
interval between two measurements; and (ii) predicted values, in which a
DPS is used to inform sensor nodes about their future measurements and
avoid unnecessary transmissions.

2.3.4 Benchmarking
The proposed architecture adds some delay inherent to the communica-
tion between the different components (GWs, DAS-Dashboard, and the
Data Analytics Server). In our implementation, there are also delays due
to data processing in the DAS-Dashboard and Data Analytics Server, be-
sides the time needed to reprogram the sensor nodes and adjust their sam-
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Sensor
node

Average
clock drift

(ms)

σ of clock
drift (ms)

Average
introduced
delay (ms)

σ of
introduced
delay (ms)

2 −993 824 813 2514
5 −979 832 1173 2446
6 −938 862 702 2326
7 −850 787 896 2281

Table 2.1: Delays observed in the experiments.

pling intervals via WARM. To observe the average run-time overhead in-
troduced by the new data flow, we deployed the GW, the DAS-Dashboard
and the Data Analytics Server in the same machine (a PC with 64-bit Intel
Core i5 3.33Ghz, 8 GB RAM, and Ubuntu Linux 14.04 LTS), which elim-
inated any network delays that could impact their operation. Table 2.1
shows the average delays and their respective standard deviations (σ).
These values can be considered lower bounds for future distributed de-
ployments.

Note that when sensor nodes are programmed to sample in fixed time
intervals, the period between consecutive measurements may vary, due to
their clock drift. In these experiments, sensor nodes sampled, on aver-
age, nearly one second earlier than they should have reported. This value
is not taken into account when calculating the delays caused by the new
data flow. Thus, on average, the process of receiving data in the DAS-
Dashboard, analyzing its content in the Data Analytics Server, reporting a
recommendation back to the DAS-Dashboard and reprogramming a sen-
sor node did not take longer than 1.2 seconds.

2.4 Summary

A typical WSN is composed of dozens (occasionally hundreds) of ordi-
nary sensor nodes connected to a central workstation that is responsible
for providing the communication between WSNs’ managers and sensor
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nodes. In this Chapter, we described the implementation of an architec-
ture that integrates WSNs in IoT environments. In practice, data gath-
ered by WSNs can be displayed to their managers and other stakeholders,
such as data consumers and third-party services that can benefit from the
knowledge generated by sensor nodes. The difference from “traditional”
WSNs is the online data analysis and the capacity of self-management
resulting from the interconnection of several managers at the application
layer.

To demonstrate the feasibility of this architecture, we implemented
and observed the delays of processing sensor data, and communicating
with sensor nodes. In our experiments, we observed a small delay (less
than 1.2 seconds) to collect and process the WSN’s data, which illustrates
the architecture’s real-timeliness that can be exploited in several use cases.

Thanks to the scalability of the proposed architecture, future works
may integrate several WSNs that report data simultaneously. Meanwhile,
the DAS-Dashboard can provide access to cloud services that exploit the
sensor data to a high degree. Additionally, new business models can ex-
plore the remote access to sensor data provided by the DAS-Dashboard.
The success of our deployment shows that WSNs can be incorporated into
self-managing IoT environments that do not depend on human interven-
tion for fine-tuning their operation. In the following Chapter, we validate
the architecture’s applicability running an SPS application to optimize the
WSN’s operation.
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Chapter 3

REINFORCEMENT
LEARNING FOR
CONTROLLING SENSOR
NODES

In WSNs, GWs are the most powerful devices regarding computing power
and energy supply. Since these devices have access to information re-
trieved from several locations, they may assemble a broad picture of the
environment’s evolution and infer predictive models at a large time-space
scale. Existing SPSs show that GWs can predict measurements of a sen-
sor node without communicating directly with it. These mechanisms re-
duce the number of transmissions and predict missing measurements us-
ing past and recent measurements of sensor nodes in the same neighbor-
hood [49, 50, 51, 52]. To do that, GWs may account for possibly existing
cyclic behavior, global trends or other aspects not discernible from the
sensors’ limited (time and space-wise) perspective. Besides reducing the
number of WSN transmissions, an SPS can completely turn off sensor
nodes’ MCUs for a while, which reduces their energy consumption, and
may also be an important step in the direction of improving the overall
WSN’s lifetime.
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In the architecture presented in Chapter 2, cloud services empower
GWs, giving them access to more information about the environment in
the form of knowledge built outside the WSNs. In this Chapter, we pro-
pose an SPS that provides on-line sampling interval adaptation using the
architecture described in Chapter 2. First, we formally represent the sce-
nario of a monitoring WSN through the RL model and apply a Q-Learning
algorithm that learns the most suitable sampling intervals under different
conditions, without an a-priori model of the environment’s evolution.

Sampling intervals affect the wireless medium access, end-to-end de-
lays, and sensor nodes’ energy consumption. Their values are particularly
useful in monitoring WSNs, where data quality is reduced if the time in-
terval between two measurements is not sufficiently short to report sig-
nificant changes in the monitored parameters, or if it is too brief and sev-
eral similar (and, consequently, unimportant) values are reported. Also, a
sampling interval set under some conditions may occasionally become too
short (or too long) within time, due to the environment’s evolution. Thus,
our primary goal is to guarantee the minimum number of transmissions
needed to avoid losing valuable environmental data. To achieve that, we
aim to keep the maximum difference between two consecutive measure-
ments below an application-defined threshold. In the end, we simulate
the proposed mechanism to observe the factors that impact the scheme’s
performance and experiment the algorithm in a real deployment.

3.1 Single Prediction Schemes with model gen-
eration in Gateways

Especially in environmental monitoring WSNs, measurements made by
closely positioned sensor nodes have a spatio-temporal correlation, which
can be used to generate probabilistic models, approximate the data to
well-known distributions and associate confidence levels to predictions.
Hence, the number of transmissions can be reduced if GWs predict mea-
surements and locally check whether the user-imposed quality constraints
are matched or not. Because of the autonomy is given to GWs, SPSs have
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been used in several application types, such as topology controlling, clus-
tering and adaptive sampling.

3.1.1 Topology control

Some approaches use SPSs to exploit the spatio-temporal correlation be-
tween sensor nodes’ measurements and build sets of nodes that can pro-
vide “trustful” measurements and should, therefore, be regularly sam-
pled [50, 52]. In these approaches, only a subset of sensor nodes is acti-
vated during a time interval and all the others have their radios and sensors
turned off to reduce the number of transmissions, save energy and extend
the WSN’s lifetime. Every subset of sensor nodes provides the values
used to predict the measurements of the whole WSN. The predicted val-
ues, on average, should differ by less than a user-defined threshold from
the real measurements.

The Binocular framework requires, before the WSN deployment, the
knowledge about which subsets of sensor nodes must be active at a
time [50]. During the so-called data processing phase, the GW receives
measurements from sensor nodes and calculates linear transformations
that will be used to make predictions using data from the sensor nodes that
will remain active. Simulations using real data showed that this frame-
work could be used to extend the WSNs’ lifetime when the requirements
about the accuracy were not very strict, namely, when the temperature
could be wrong by ±0.5oC with a confidence level of 95%. Further-
more, the WSN must be dense enough so that some sensor nodes could
be switched off and their measurements inferred using their neighbors’
measurements.

3.1.2 Clustering

Alternatively, SPSs can be used to build clusters of sensor nodes based
on the similarity of their measurements. This criterion reduces the diver-
gences between measurements and their deviation from the average in a
cluster, which facilitates the data compression [53]. Simulations using
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data collected by real sensor nodes showed that it was possible to reduce
the number of transmissions in a WSN without injecting significant errors
to the data reported to the WSN’s managers. Alternatively, some authors
used Principal Component Analysis (PCA) to reduce the number of di-
mensions of the data and make fewer transmissions from Cluster Heads
(CHs) to GWs [13].

The main drawback of this kind of clustering is that sensor nodes’
roles in the clusters rely on data analysis and not in the computational
power of the sensor nodes. Consequently, CHs may not have the compu-
tational power needed to analyze sensed data, because the analysis algo-
rithm may require some advanced instructions that cannot be computed
in the simplest wireless sensor nodes, such as the multiplication of large
matrices in the PCA method.

3.1.3 Adaptive sampling

User queries contain, besides the data that should be returned, the error
tolerated by the user. Therefore, GWs can answer that the current mea-
surements are inside a range of values if their confidence is high enough
to satisfy a user-tolerated error. To do that, GWs must be able to pre-
dict future measurements based on the statistics of the historical data–
considering the uncertainty about the current values–and autonomously
decide whether to pull more measurements or not [49]. As an alternative,
GWs can use inferential statistics to determine which sensor nodes have
to be sampled, based on their odds of providing valuable information to
the WSNs’ managers.

For example, the mechanism called BBQ adopts linear regressions
to exploit the correlation between different types of data that the sensor
nodes may be able to measure, such as their voltage and local tempera-
ture [51]. Results of simulations using real data suggest that this mecha-
nism can reduce the number of transmissions, save energy and keep a high
confidence level (95%) about the information retrieved, besides keeping
a low number of mistakes in stable scenarios (where changes are easier
to predict). Alternatively, the PCA method was used to select only the
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sensor nodes that measured most of the variance observed in the environ-
ment [54]. This technique reduced the workload of the sensor nodes and
prolonged twice the WSNs’ lifetime, according to the results obtained
from experiments in real testbeds.

3.2 Adapting sampling intervals using a Rein-
forcement Learning algorithm

Inspired on existing SPSs, we designed a mechanism to adapt sensor
nodes’ sampling intervals using an RL algorithm [55]. Differently from
existing works, our proposal does not necessarily rely on the computa-
tional capacity of sensor nodes or GWs, because the incorporation of
WSNs into the IoT allows the use of cloud services that can perform
powerful machine learning techniques over sensed data. To the best of
our knowledge, this is the first approach that dynamically adapts the sam-
pling interval of the sensor nodes based on an RL technique.

3.2.1 Background - Reinforcement Learning

RL is a machine learning technique that allows an autonomic agent to
determine a system’s optimal behavior to achieve its goal [56]. Such an
optimal behavior is based on the positive and negative feedbacks received
from the environment after taking certain actions. Assuming that inter-
actions between the agent and the environment occur at a sequence of
discrete time instant t, an RL model is defined by:

• A set of possible observationsO that the agent may make, such that
ot ∈ O is the observation made at time t;

• A set of states S, such that the state st ∈ S is observed at time t;

• A set of actions A, such that the action at ∈ A is taken at time t;
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• A state transition function T (st, at, st+1) that calculates the prob-
ability of making a transition from st to st+1 after performing at;
and

• A set of rules that determine the scalar immediate reward
rt+1 = R(st, at), which scales the goodness of taking at in st.

Each state should satisfy the Markov property1, that is, to be indepen-
dent of any state or action previous to time t. An RL agent aims to obtain
the maximum long-term reward for a Markov Decision Process environ-
ment, even when the model of the environment is unknown or difficult to
learn. The strategy adopted to maximize the long-term reward defines the
agent’s way of behaving at a particular time and is called a policy.

Q-Learning

Q-Learning is an RL algorithm that does not depend on a state transi-
tion function to work. More precisely, the algorithm relies on an optimal
action-value function Q(s, a), which value is the estimated reward of ex-
ecuting a in s, assuming that the agent will always follow the policy that
provides the maximum long-term reward.

At any state st, a selected action at determines the transition to the
state st+1 and the value associated to the pair (st, at) is updated:

Qt+1(st, at) = α
(
rt+1 + γmax

a
Qt(st+1, a)−Qt(st, at)

)
+Qt(st, at),

(3.1)

where st+1 and rt+1 are the state and reward, respectively, obtained after
performing at in st, the learning rate α ∈ [0, 1] is a positive step-size pa-
rameter, and the discount factor γ ∈ [0, 1] is used to determine the weight
of future rewards. If γ = 0, the agent will behave so as to maximize its
immediate reward, even if this would imply a lower long-term return.

1RL can also be applied to cases that do not satisfy the Markov property [56]
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By visiting several times each (s, a) pair, the agent learns which is
the action that gives the best long-term reward in each state. Hence, if
the number of states is high, the algorithm takes longer and requires more
data to find the best action for each state, i.e., to converge. Therefore, it
is very critical to have a concise representation of the environment, thus
to define the set of states according to the goals of the algorithm and do
not include unnecessary information. In short, the set of states should
illustrate only and all the characteristics that are relevant for the problem
under consideration.

3.2.2 Adaptive sampling interval problem as a Rein-
forcement Learning problem

To formulate the adaptive sampling interval problem as an RL problem,
we consider the number of transmissions as a general measure of resource
optimization (which is also valuable in scenarios where sensor nodes have
energy constraints). Thus, to illustrate further concepts, we took as a ref-
erence the real scenario of a WSN with several nodes measuring temper-
ature values in an office [57]. From this real dataset, we used a subset of
measurements in the preliminary analysis presented in this Section, and
a different subset in the performance evaluation in Section 3.3.3 (missing
values were interpolated and added to a small white noise). Moreover,
as the sensors of this scenario were set to sample temperature nearly ev-
ery 30 seconds, we set this as the shortest sampling interval and let the
range of possible sampling intervals be (i) 30 seconds; (ii) 60 seconds;
(iii) 120 seconds; or (iv) 240 seconds.

Goal

A valuable adaptive sampling algorithm should systematically set up the
most proper sampling interval so as to guarantee the best quality-resource
trade-off under the current environmental conditions. As for the qual-
ity, we define the goal of the agent regarding an accepted threshold τ ,
such that the algorithm should avoid that the absolute difference between
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Factor Description
Quality (q) q , |ot − ot−1| ≤ τ ∴ q ∈ {true, false}
Hour of the day (h) h ∈ [0, 1, . . . , 23]

Is it working hour? (ω) ω , h ≥ 7 and h ≤ 18 ∴ ω ∈ {true, false}
Day of the week (d) d ∈ {Monday, Tuesday, . . . , Sunday}
Is it weekend? (e) e , d ∈ {Sat., Sun.} ∴ e ∈ {true, false}
Sampling interval (k) k ∈ {30, 60, 120, 240} seconds
Node ID (i) Individual sensor node identification.

Table 3.1: Factors that can impact the quality of measurements.

consecutive measurements exceeds an application-specific predefined τ .
Meanwhile, higher sampling intervals are preferred to reduce the num-
ber of transmissions and, consequently, the energy consumption in sensor
nodes.

Observations

We define wireless sensor nodes as the source of the observations made by
an agent. Observations may vary, among other parameters, between tem-
perature, relative humidity and solar radiation. In our scenario example,
an observation ot is a temperature measured at time t.

States

To accurately define the set of possible states, we make a preliminary
evaluation of part of the data collected by the WSN and identify character-
istics that have a high correlation with our goal. Such characteristics are
transformed into predictors, and a Random Forest [58] is built to classify
in which periods of time each sampling interval would make consecutive
measurements that differ by less than τ .

To illustrate this process, we used data from three different sensor
nodes sampled every 30 seconds for three days. We removed interme-
diate measurements to simulate different sampling intervals. Then, we
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observed that if the value of τ were set to 0.02oC, a sampling interval of
120 seconds would be sufficient to observe a difference of less than τ in
nearly one-half of the time. Furthermore, sampling intervals of 30, 60 and
240 seconds would be sufficient to observe an absolute difference of less
than τ in, respectively, approximately 73.2%, 59.2% and 26.1% of the
time. Note that we do not expect to measure fast enough to make all mea-
surements differ by less than τ , but we know that there are many cases in
which sensors do not have to sample every 30 seconds to make it.

Finally, we annotated each measurement according to the characteris-
tics shown in Table 3.1 and built a Random Forest to predict if a measure-
ment would differ by less than τ from the previous one (i.e., q = true). In
fact, the Random Forest method permits us to observe which factors have
the most positive impact on the predictions’ accuracy.

Based on the results obtained and considering the importance of keep-
ing a small number of states, we defined the set of states for our RL
model. Each state is a combination of quality, sampling interval and a
verification of whether it is a working hour or not: {q, k, ω}. In short, as
we were looking for states that could be used by different sensor nodes,
we ignored any factor that was less important than the node ID to predict
the quality of the measurements, plus the hour of the day (h), because it
would represent a significant increase in the number of states.

Actions and Transitions

In the adaptive sampling interval problem, actions are used to control the
sensor nodes’ sampling interval. An action can be specific, such as “set
the sampling interval to 30 seconds”, or more abstract, like “increase the
sampling interval” requiring the new sampling interval to be calculated
based on the current one. To avoid abrupt changes provoked by occasional
outliers and noise in the data, we adopted “smooth” actions that only
move to neighboring states. Therefore, in our illustration scenario an
action a could take one of the following values: (i) increase the sampling
interval; (ii) keep the sampling interval; or (iii) reduce the sampling
interval.
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Reward

A reward is a mathematical representation of the gains obtained after re-
acting to the environment with a particular action. In our case, it is calcu-
lated after changing the sampling interval to a new value, while in s. As
the reward defines the target of the algorithm, in our problem, it should
ensure that the difference between consecutive measurements is less than
τ , while not oversampling.

The algorithm adopted for the reward is based on the rate of transmis-
sions avoided. For instance, if the sampling interval is 120 seconds, the
sensor node is transmitting four times less than if it was 30 seconds. In
this case, therefore, the original reward would be set to 4. Then, if the ab-
solute difference between two consecutive measurements (δ) is less than
τ , we assume that the sampling interval is small enough to avoid losing
significant changes in the environment and take the original reward. If δ
is greater than one-half of τ , the sampling interval is the best one possi-
ble, so we multiply the original reward by 1.5. Otherwise, if δ is greater
than τ , the sampling interval is too long, and the reported data may be
missing important changes in the environment. In this case, we multiply
the original reward by −1.

3.3 Simulations
To check the feasibility of using RL as a means of intelligently adapting
sampling intervals, we simulated its use in artificial and realistic scenar-
ios. Using OMNeT++ [59] and MiXiM [60], we reproduced a WSN with
a single sensor node controlled by our RL algorithm [55, 61].

To represent the simplest situations, we generated synthetic data with
evident attributes, such as large and significant (versus small and negli-
gible) variations in a short period. Having control over the data charac-
teristics allows us first to verify if the RL algorithm decides for the most
proper actions in different scenarios. Later, we will analyze the impact of
the values of learning rate α and discount factor γ in the decisions taken
by the agent.
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Learning
rate α

Discount
factor γ

Convergence
time (s)

% of
wrong

decisions

% of
measurements

over τ 2

0.9 0.1 1013.00 4.79 2.31
0.8 0.2 1050.32 6.11 4.38
0.8 0.1 1088.01 8.36 1.80
0.8 0.4 1163.05 13.46 8.80
0.8 0.5 1640.30 12.82 10.79
0.9 0.2 1920.57 11.57 3.65
0.5 0.2 18330.53 25.39 10.89
0.9 0.4 18457.82 19.90 4.63
0.6 0.1 21922.80 18.47 5.47
0.9 0.5 23512.98 20.68 4.34

Table 3.2: Simulations over the Controlled datasets: average convergence
times and percentage of wrongly taken decisions by each combination of
α and γ. These values are sorted by the lowest convergence times.

Finally, we observed how long the Q-Learning algorithm takes to de-
cide for the correct sampling interval. We call this period convergence
time, and we assumed that the agent has converged to a final value if the
sampling interval did not change in, at least, 75% of the future decisions.
The reported values are the average of all considered scenarios.

3.3.1 Synthetic scenarios with fixed expectations

We generated six synthetic scenarios in which we had control about the
sampling intervals that the algorithm should set. In these datasets, the
difference between consecutive measurements is proportional to τ . For
instance, if the difference between two consecutive measurements made
at periods of 60 seconds is always smaller than τ , setting the sampling
interval to 30 or 60 seconds is sufficient to satisfy the requirements of
quality. However, setting it to 60 seconds is preferred, because it reduces
the number of transmissions, in comparison with the 30-second interval.
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In the Controlled 30 dataset, the difference between consecutive mea-
surements made at intervals of 30 seconds is always 110% of τ . In prac-
tice, even the smallest sampling interval (30 seconds) is not sufficient to
provide measurements in which consecutive values differ by less than τ .
Therefore, the agent must define the ideal sampling interval as 30 seconds
to reduce as much as possible the quality loss. Note that in this particular
scenario, a difference between consecutive values higher than the max-
imum threshold is unavoidable. Thus, we did not consider this dataset
when reporting the percentage of measurements over τ .

In the Controlled 60, Controlled 120 and Controlled 240 datasets, the
difference between consecutive measurements made at intervals of 30 sec-
onds is respectively 47.5% 23.75% and 10% of τ . Hence, 60, 120 and 240
seconds are respectively the largest possible sampling intervals such that
the sensor node will never report a difference greater than τ . Hence, the
agent must define the ideal sampling interval respectively to 60, 120 and
240 seconds in each scenario. Note that, antagonistically to the Controlled
30 dataset, in Controlled 240, successive measurements never have an ab-
solute difference higher than the maximum threshold. Thus, we also did
not consider this dataset when reporting the percentage of measurements
over τ .

Table 3.2 shows the combinations with the ten lowest average conver-
gence times, the percentage of times that the agent took a wrong decision
(using the expected sampling interval as a reference) and the percentage
of consecutive measurements that differed by more than τ . In our simula-
tions, the average convergence time was less than 2000 seconds (around
33 minutes) only in six cases and nearly ten times longer in the remain-
ing. We highlight, as WSNs are usually long-term deployments that last
for months (or years), the period of one day (or less) spent to find the
most proper sampling intervals represents less than 1% of their average
lifetime.

Half of the combinations shown in Table 3.2 had high α (i.e., α ∈
{0.8, 0.9}) and low γ (i.e., γ ∈ {0.1, 0.2}), which means that the agent
performs better when its decisions are mostly based on the current status
of the environment, and future estimated rewards have little importance.
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In practice, it shows that if a certain action resulted in high rewards in the
day before, it would not necessarily result in high rewards in the future,
due to the environment’s evolution.

3.3.2 Synthetic scenarios with moving expectations

In real world applications, the environment may be continuously chang-
ing and evolving, requiring that agents never stop to learn, because there
might not exist an answer that stands forever as the most proper one. To
synthesize these situations, we generated three datasets that are combi-
nations of the Controlled datasets presented before. Finally, we simulate
four days in which the agent should converge to a new value each day, up-
dating its previous belief. In practice, these scenarios will show how good
is the algorithm to update its decisions in response to the environment’s
evolution.

The sequence of expected sampling intervals varies in each dataset. In
Evolving I, the sampling interval that satisfies τ evolves in the sequence:
30 seconds in the first day, 60 seconds in the second day, 120 seconds in
the third day, and 240 seconds in the last day. In Evolving II, the most
proper sequence of sampling intervals is 240, 120, 60, and 30 seconds. In
Evolving III, the most proper sequence of sampling intervals is 60, 120,
240, and 30 seconds.

Table 3.3 shows the three parameter combinations that took less than
16 hours to converge on every simulated day and the respective percentage
of wrong decisions. Recall that, in these–more realistic–scenarios, the
conditions change every 24 hours. Therefore, every day, the agent revisits
states and updates its knowledge to set the most proper sampling intervals,
which increases the time necessary to converge: on average, at least 4.5
hours more than in the previous simulations.

Once again, a high α (namely, α = 0.9) combined with low γ (i.e.,
γ ∈ {0.1, 0.2, 0.5}) would be the best option to reduce the average time
that the agent took to converge to the most proper sampling interval value,
considering that the environment is continuously evolving.
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Learning
rate

Discount
factor

Convergence
time (s)

% of
wrong

decisions

% of
measurements

over τ
0.9 0.2 18417.80 22.78 7.56
0.9 0.1 31420.31 37.45 3.24
0.9 0.5 31782.82 48.30 13.64

Table 3.3: Simulations over the Evolving datasets: average convergence
times and percentage of wrongly taken decisions by each combination of
α and γ. The values are sorted by the lowest convergence times.

3.3.3 Real world scenarios

In real world scenarios, the environment is always changing, and there are
external (uncontrolled) factors that impact the measurements. To simulate
that, we adopted real measurements collected during five days by five
wireless sensor nodes and set 0.02oC as the value of τ , using the strategy
explained in Section 3.2.2. These measurements were collected in the
same experiment we considered to set up the states in Section 3.2.2, but
in these simulations, we used data from different sensor nodes.

To illustrate the results, we assume that during the first 12 hours, the
Q-Learning algorithm “calibrated” the action-value function, i.e., it tried
to visit all state-action pairs to estimate the long-term rewards that each
action would provide in each state. Therefore, we considered only the
results observed in the last 4.5 simulated days.

As before, we observed how the values of α and γ impacted the qual-
ity of the measurements and the number of wireless transmissions in the
sensor node. However, differently from the synthetic scenarios, it is not
possible to define the expected values in real world situations. The main
reason is that the environment is constantly changing and evolving, be-
sides external factors that produce noise and change the environment it-
self. Indeed, this is the core motivation of this work and what requires
the design of a solution that can adaptively adjust sensor nodes’ sampling
intervals.
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Figure 3.1: Impact of the Q-Learning agent in the reduction of the number
of transmissions.

Number of transmissions

In our experiments, the number of transmissions in a sensor node achieves
its maximum when the sampling interval is 30 seconds and its minimum
when the sampling interval is 240 seconds. Intuitively, setting the sam-
pling interval to 60, 120 and 240 seconds represents a reduction of respec-
tively 50%, 75% and 87.5% in the maximum number of transmissions.

Figure 3.1 illustrates how many transmissions could be saved when
the Q-Learning was adopted to adjust the sensor node’s sampling interval.
To make this plot, we considered that the Q-Learning agent triggered one
new transmission every time a new sampling interval was set. In the best
case, the number of transmissions could be reduced to 72.57% of its maxi-
mum, when α = 0.8 and γ = 0.1. As observed in our preliminary results,
the highest savings happened when α was high (i.e., α ∈ {0.7, 0.8, 0.9})
and γ was low (i.e., γ ∈ {0.1, 0.2, 0.3}). That is, when the agent learned
mostly from recent environment feedback and minimally from the ex-
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pected reward. We highlight the importance of setting proper values to α
and γ, given that most of the cases did not reduce by more than 15% the
maximum number of transmissions.

Efficiency

Figure 3.2 shows the percentage of consecutive measurements that dif-
fered by more than τ . To help the understanding of the magnitude of the
errors, we added four baselines that represent the rates that would be ob-
served if the sampling intervals were fixed, based on the same data used
in the simulations. Again, the best results happened in scenarios using
higher α (i.e., α ∈ {0.7, 0.8, 0.9}) and lower γ (i.e., γ ∈ {0.1, 0.2, 0.3}).

In the best result (α = 0.9 and γ = 0.1), the rate of measurements over
τ was similar to the scenario with a fixed sampling interval of 30 seconds.
With the sampling interval fixed to 30 seconds, we observed 16509 pairs
of consecutive measurements that differed by more than τ with an average
of 0.063oC. Using Q-Learning, we observed 13679 pairs of consecutive
measurements that differed by more than τ , which differed by 0.078oC
on average. These small values strengthen the relevance of the reduc-
tion in the number of transmissions shown above, because they indicate
that the avoided transmissions are, in fact, worthless in this scenario. In
conclusion, a real application that adopted Q-Learning with α = 0.9 and
γ = 0.1 would have saved around 65% of its transmissions and observed
an average of 0.024oC in the absolute difference between two consecutive
measurements.

3.4 Experimental results
To test the proposed scheme, we utilized the architecture implemented
in Chapter 2, which has a WSN to monitor room-temperature in an of-
fice [37]. In this office, the temperature is constantly changing, and sev-
eral factors impact the measurements, such as the presence of people and
the air conditioning system. Considering measurements from all sensor
nodes during the first two days, we set τ = 0.5oC. We highlight that
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Figure 3.2: Percentage of consecutive measurements that differ by more
than τ . The black lines show the percentage observed the sampling inter-
vals fixed to the values written in the plot.

around 6.4% of consecutive measurements made at intervals of 480 sec-
onds would differ by more than 0.5oC and that around 0.15% of con-
secutive measurements made at intervals of 30 seconds would still differ
by more than 0.5oC. Therefore, we did not expect to measure fast suf-
ficiently to have all measurements differ by less than this value, but we
knew that there might exist several cases in which sensors did not have to
sample every 30 seconds because the environment was not (significantly)
changing every time.

From the third day, the Data Analytics Server systematically set up the
most proper sampling interval so as to guarantee the best quality-resource
trade-off under the current environmental conditions. The parameters of
the Q-Learning algorithm were chosen based on the best results obtained
in previous simulations, i.e., α = 0.9 and γ = 0.1. Again, to illustrate the
results, we considered the first 12 hours as the time necessary for the Q-
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Sensor
node

Transmissions
saved δ > τ Average δ

2 82.71% 7.68% 0.29
5 84.62% 4.52% 0.25
6 75.82% 11.32% 0.29
7 43.35% 2.78% 0.09

Table 3.4: Transmission savings observed in the experiments

Learning algorithm to “calibrate” the action-value function, i.e., when it
visits all possible action-state pairs to find the best actions it should take
in the future. Thus, after the initial 12 hours needed to “calibrate”, the
experiment ran for two days more.

Number of transmissions

In our experiments, the number of transmissions in a sensor node achieved
its maximum when the sampling interval was 30 seconds and its minimum
when the sampling interval was 480 seconds. Intuitively, setting the sam-
pling interval to 60, 120, 240 and 480 seconds would represent a reduction
of respectively 50%, 75%, 87.5% and 93.75% in the maximum number of
transmissions.

Every time that the DAS-Dashboard reprogrammed a sensor node, at
least one extra transmission was made (due to packet losses, commands
were retransmitted after a delay to guarantee their delivery). Considering
also these transmissions, Table 3.4 illustrates how many transmissions
could be saved in each case when the Q-Learning algorithm was adopted
to adjust the sensor nodes’ sampling interval. The baseline is the scenario
with the sensor nodes always sampling every 30 seconds without extra
transmissions from the DAS-Dashboard. In the best case, the number of
transmissions was reduced to 84.62% of its maximum.
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Efficiency

In Table 3.4, it is possible to see that the average absolute difference be-
tween consecutive measurements was always smaller than τ . In the worst
case, sensor nodes 2 and 6 reported an average of 0.29oC in the absolute
difference between consecutive measurements.

Concerning the algorithm’s efficiency, the number of consecutive
measurements that differed by more than τ could be extremely low. For
example, sensor node 7 had the best results: only 2.78% of the consec-
utive measurements differing by more than τ . We could observe, in the
reported measurements, that sensor node 7 was directly affected by the air
conditioning system, which was positioned in front of it. As a response
to the great variations, the agent took the most precautionary actions to
avoid negative rewards. As a result, this sensor sampled most of the time
in periods of 30 seconds, which increased the average number of trans-
missions, but generated satisfactory results regarding the quality of the
measurements.

3.5 Summary
We conclude that an SPS that uses an RL algorithm to control sensor
nodes’ sampling intervals can be very profitable. Furthermore, we high-
light that the proper choice of its parameters (α and γ) can significantly
impact the results. For instance, in our simulations, higher values of α
(i.e., α ∈ {0.8, 0.9}) and lower values of γ (i.e., γ ∈ {0.1, 0.2}) pro-
vided the best cost-benefit in the “needed transmissions”-“high quality
measurements” relationship. In our experiments, a real WSN could be
automatically configured using an RL algorithm that learned from the his-
torical data and generated instructions to adapt sensor nodes in reaction
to the environmental changes. In practice, the algorithm could reduce up
to 84.62% the number of transmissions in the sensor nodes. Most impor-
tantly, results show that no human intervention is necessary to adjust the
sampling intervals according to the environment’s evolution

The most significant contribution of this Chapter is to show that the ar-
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chitecture proposed in Chapter 2 provides necessary means to make smart
WSNs with the capacity of self-optimizing. Then, having clarified that
SPSs can benefit sensor networks, we point out an unanswered question:
Is it feasible to forecast the sensors’ measurements in the sensors?

Discarding the direct access to other sources of data that could im-
prove the predictions’ accuracy, the list of prediction algorithms is re-
duced, and the results are limited by the sensor nodes’ constrained hard-
ware. For the next generation of sensor applications, a detailed study is
necessary to show how accurate can be the predictions made by the sen-
sors and their respective cost-benefit analysis. In the following Chapter,
we will investigate the feasibility of using complex prediction algorithms
in DPSs to reduce the number of transmissions without reducing the qual-
ity of their measurements.

46



Chapter 4

EFFICIENCY OF DUAL
PREDICTION SCHEMES

SPSs exploit the computational power of the GWs to guarantee that sen-
sor nodes will only measure and transmit data. Such a conservative strat-
egy fits wireless sensor nodes with memory and energy constraints, but
inevitably reduces the quality of the measurements provided by WSNs,
when compared with scenarios in which sensor nodes are programmed to
measure and transmit raw data regularly at the highest frequency possible.

Differently from SPSs, in DPSs, sensor nodes do not abstain from
sensing the environment, and, therefore, the reduction in the quality of
the measurements provided by the WSNs can be controlled by the sen-
sor nodes. Fortunately, sensor nodes have evolved in the last years from
devices with constrained energy and memory resources [36] to the point
where some modern hardware can harvest energy and work autonomously
for longer periods [62]. Consequently, several approaches adopted com-
plex algorithms for predictions in DPSs to avoid only the unnecessary
transmissions and reduce the energy consumption in sensor nodes with-
out compromising the quality of their measurements.

However, the results published so far are not sufficient to support a
broad adoption of DPSs. In some cases, state-of-the-art algorithms for
predictions have been compared and shown to be accurate in several uses
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that do not involve WSNs [63]. In other works, researchers also con-
sidered the limited data access and processing power inherent to sensor
nodes, but few scenarios were experimented [32, 64]. In this Chapter, we
investigate if the current state-of-the-art forecasting methods (i.e., algo-
rithms to predict future values) can keep the quality of the measurements
provided by different WSNs, given sensor nodes’ memory limitations and
their constrained access to external knowledge.

To do that, we conduct a study over datasets encompassing several
data types, originated in different scenarios [65]. These datasets represent
some of the sensor applications and illustrate the data heterogeneity in-
herent to sensor networks. As for the evaluation, we focus on the number
of transmissions avoided and the quality of the reported data.

4.1 Background - Prediction methods

The term prediction can either refer to the process of inferring missing
values in a dataset based on statistics or empirical probability, or to the
estimation of future values based on the historical data. The latter mecha-
nism is also called forecast, and it is the class of predictions we will refer
to in this Chapter. To predict the future, we must consider a high number
of possible outcomes, given the uncertainty about the factors that may im-
pact the scenario under consideration. Thus, forecasts differ from other
predictions because this range of possibilities tends to be wider than in
cases when missing values are inferred.

A prediction method P is a deterministic algorithm that produces pre-
dictions based on two input variables: a set of observed values X and
a set of parameters θ. A prediction model p is an instance of a predic-
tion method P , such that pθ(X) = P (X, θ). Thus, a prediction model is
determined by P and θ.

The values of θ can be provided by a utility function that measures
the predictions’ accuracy, models’ complexity or information loss. Thus,
choosing a prediction model means finding the values of θ that best sum-
marizes the current measurements under the criteria adopted by the utility
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function (e.g., the minimum information loss estimated). In Appendix A,
we summarize methods that have been used to choose prediction models
in WSNs.

4.2 Background - Dual Prediction Schemes
In DPSs, there is an initialization phase, i.e., a period during which sen-
sor nodes report all the data that they have measured to the GWs [66].
After this phase, prediction models can be chosen. To do that, there
are three possible strategies (some mechanisms allow more than one ap-
proach [67]):

1. GW and sensor nodes choose the same prediction models indepen-
dently, based on the data collected during the initialization phase.

2. Each sensor node chooses its prediction model and transmits the
parameters to the GW.

3. The GW chooses prediction models and transmits them to sensor
nodes.

After choosing the prediction models, sensor nodes have the advan-
tage of locally verifying if predictions are inaccurate and transmit the ac-
tual measurements if needed. Thus, sensor nodes may either regularly
report the data to the GW, due to the lack of accuracy in predictions, or
not report any sensor reading at all, in case that the predictions are suffi-
ciently accurate. Finally, sensor nodes and GW may periodically restart
the whole cycle with a new initialization phase to choose new prediction
models.

4.2.1 Independent model choice
The initialization phase ensures that the GW will have complete informa-
tion about the environment before any prediction model is chosen. There-
fore, after this phase, the GW can choose the same prediction models as
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Figure 4.1: A variant of the DPS with independent model generation. The
sensor node and the GW can compute the same prediction model because
they are programmed to use the same data.

sensor nodes, without making any new transmission. Figure 4.1 illus-
trates the sensor nodes’ and GW’s behaviors. New prediction models can
be regularly chosen based on the knowledge simultaneously available to
sensor nodes and GW. As a drawback, the variety of the prediction mod-
els is restricted by the memory and computing power limitations of sensor
nodes.

The Least Mean Squares (LMS) method provided accurate predic-
tions in simulations where sensor nodes and GW generated their pre-
diction models independently [66, 68, 69]. For instance, in a particular
scenario, only 10% of the measurements would be necessary to monitor
room temperature accurately [66].

4.2.2 Model choice in sensor nodes
Alternatively, prediction models can be chosen in sensor nodes, as illus-
trated in Figure 4.2. As before, sensor nodes start transmitting all the
measurements to the GW. However, a new responsibility is assigned to
sensor nodes: after collecting local measurements and choosing a predic-
tion model that fits the current environment, they must communicate the
prediction model to the GW. The main advantage of this mechanism is
that sensor nodes can decide for new prediction models using all the mea-
sured data, instead of using only the information that they share with the
GW. On the other hand, sensor nodes need extra transmissions to inform
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Figure 4.2: As sensor nodes can overhear their neighbors’ data with-
out overloading the network or congesting the medium, they may locally
decide the best prediction method and later inform their decision to the
GWs.

the GW about their decisions.
Simulation results using real data from WSNs showed that this ap-

proach could reduce the number of data transmissions using AutoRe-
gressive (AR), AutoRegressive Integrated Moving Average (ARIMA),
and Exponential Smoothing (ES) models1 with neither exceeding the
constrained memory nor the computational resources of typical wireless
sensor nodes [70, 71, 72]. Alternatively, a hybrid mechanism may im-
prove the quality of the predictions if sensor nodes have the autonomy
to adopt more complex prediction methods (e.g., Artificial Neural Net-
works (ANNs)) when the simplest predictions (e.g., ARIMA) are inac-
curate [33]. Only in the worst case, if the predictions using the most
complex method also fall outside the accepted threshold, sensor nodes
will have to transmit the real measurements to the GW.

4.2.3 Model choice in the Gateway

In this type of DPS, the GW is responsible for periodically choosing
and transmitting new prediction models’ parameters and error acceptance
levels to sensor nodes, as shown in Figure 4.3. Generating the predic-
tion models in the GW exploits the asymmetric computational power

1In Appendix B, we describe all of these methods in detail.
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Figure 4.3: In a DPS, a measurement is only transmitted if its forecast is
inaccurate. The GWs may be responsible for transmitting new prediction
models every time interval after the initialization phase.

availability in WSNs: GWs usually have cheaper energy sources and
more resources (such as memory and processing power) than ordinary
sensor nodes that are mainly used to measure and report environmen-
tal data [73, 74]. The self-managing architecture described in Chapter 2
boosts GWs’ computational power with cloud services that can analyze
the collected data and have the potential to choose more accurate pre-
diction models. For example, ANNs can provide higher accuracy than
other methods, but they may not fit sensor nodes’ constraints because
this method requires a computation intensive training phase over a large
amount of data to make accurate predictions.

Additionally, the GW can assume the responsibility of adapting sensor
nodes’ operations according to the potential savings that predictions may
introduce. In such cases, the GW can estimate if it is worth to make pre-
dictions in sensor nodes, based on the relation between the predictions’
accuracy, the correlation between measurements, and the error tolerated
by the WSN’s managers [75]. According to the expected gains, sensor
nodes can be set to: (i) go to sleep mode without making any measure-
ment; (ii) make measurements and transmit every measurement done; or
(iii) make measurements and transmit them to the GW whenever the pre-
dictions are inaccurate.

Notably, some works implemented real sensor nodes to compare the
savings using several prediction methods, such as the Constant, ES, and
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ARIMA [32, 64]. In their particular use case, the Constant prediction
method was the best trade-off between accuracy and energy consumption
in sensor nodes.

4.3 Sensor network applications

We use the term sensor network to denote any set of sensor nodes that can
measure environmental parameters and report them (through their neigh-
bors if necessary) to a GW that can collect and store all the data. Such net-
works, however, may have different applications, measure different data
types and be influenced by contrasting environmental circumstances. To
categorize their characteristics and requirements, we classify sensor net-
work applications into two broad classes according to their nature: moni-
toring and tracking.

Monitoring and tracking applications share the data heterogeneity. For
example, numeric values may be stored as nominals, ordinals, intervals
or ratios [76]. Moreover, different datasets may use different units of
measurement, for example, distances can be represented in kilometers or
miles, temperatures can be represented in Kelvin, Fahrenheit or Celsius,
and time intervals can be represented in seconds, minutes, hours or days.
In conclusion, the difference between sensor measurements does not stem
only from the origin of the data, but also from its representation.

To study the efficacy provided by successfully computing accurate
forecasts in several types of sensor networks, we will adopt sensed data
collected in different experiments. To represent monitoring applications,
we will use two different datasets obtained from real world deployments
with WSNs: the Intel and the Sensorscope datasets. To represent the
tracking applications, we will use the Ball dataset, which was syntheti-
cally created based on a model of projectile launching, and the Running
dataset, which was collected using a Global Positioning System (GPS)
monitor carried by a person while running through a city.

We highlight a particular use of sensor networks that may be incor-
porated in both (monitoring and tracking) application types: the event
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detection. GWs and sensor nodes can detect events after analyzing the
available data, but detection algorithms are tightly tied to the scenarios
where they are applied and require deep domain knowledge to be de-
signed. That is, missing or wrongly reporting an event (i.e., false nega-
tives and false positives) have inherent costs that impact the operation of
the system. Given that our goal is to find a solution that would satisfy as
many applications as possible, we did not focus on the act of detecting an
event, because it would imply assessing different (higher) costs generated
by false positives and false negatives. Instead, we aim our attention at the
data collection for general purposes, presuming that it can be adopted in
a sensor network that detects events if needed.

4.3.1 Monitoring applications

As defined Yick et al., monitoring applications comprise mainly “indoor
and outdoor environmental monitoring, health and wellness monitoring,
power monitoring, inventory location monitoring, factory and process au-
tomation, and seismic and structural monitoring” [77]. Hence, in these
applications, it is more common to encounter temperature, relative hu-
midity, light, solar radiation, wind speed and soil moisture sensors, among
others, that can measure environmental parameters. Moreover, data types
are usually periodic, i.e., each one follows a similar pattern through the
days (or weeks). As shown in Chapter 3, sensor nodes’ sampling interval
could be updated at a particular time of the day, based on a data analysis.
However, sensor nodes usually do not have the computational power to
store enough data and compute such a decision without being assisted by
GWs.

Intel data

The Intel data was extracted from the same dataset used in the simula-
tions explained in Chapter 3 [57]. This dataset has been broadly used in
several works in the field to represent data that can be collected by indoor
WSNs [33, 51, 52, 75, 78].
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In this study, only the temperature values will be utilized. We se-
lected five consecutive days and observed the data collected by three sen-
sor nodes to illustrate the performance of the predictions. Two nodes were
selected according to the variance in their temperature measurements, i.e.,
those with the lowest and the greatest variance, and the third one was ran-
domly picked (respectively, sensor nodes 35, 21 and 40). The missing
values were linearly interpolated and summed to a small white noise.

In Figure 4.4a, we can observe that the data collected by the sensors
vary between 15oC and 37oC. Even though the measurements do not look
very similar, it is possible to see that there is a daily pattern: their values
and variances increase during the days and are more stable and similar at
the beginning and the end of the days.

Sensorscope data

The Sensorscope data was collected by wireless sensor nodes in a de-
ployment made on a rock glacier in Switzerland [79]. The WSN was
composed of ten sensor nodes specially designed for environment mon-
itoring. The experiment lasted five days, and each sensor node reported
its measurements every two minutes, which resulted in over 3000 reports
per node, each of them including eight different measurement types: tem-
perature, solar radiation, relative humidity, soil moisture, watermark, rain
level, wind speed, and wind direction.

We will use the temperature values of three sensor nodes to illustrate
the performance of the predictions. The sensor nodes selected were the
ones that presented the lowest and the greatest variance in their measure-
ments, and the last one was randomly chosen (respectively, sensor nodes
5, 7 and 15), similar to how we selected the sensor nodes in the Intel
dataset. Again, the missing values were linearly interpolated and summed
to a small white noise.

Figure 4.4b shows that, compared with the temperatures observed in
the Intel dataset, the values are much lower (between −12oC and 12oC),
which is explained by the sensors’ localization and the nature of the ex-
periments. Moreover, there are less abrupt changes, although the presence
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(a) Intel: Temperature measured by three sensors in an office [57].
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(b) Sensorscope: Temperature measured by three sensors in a mountain [79].
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(b) Running: GPS coordinates of a person during street runs.

Figure 4.5: Datasets used to illustrate monitoring and object tracking applications.
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of the sun clearly changes the values and increases their variance during
the days.

4.3.2 Tracking applications

Tracking applications include primarily human tracking, battlefield obser-
vation (e.g., enemy tracking), animal tracking and car tracking in smart
cities. This kind of application usually requires more powerful sen-
sors than those used in monitoring applications, such as cameras, mi-
crophones, and radio-frequency identifications (RFIDs). In many target
tracking applications, the data is sensed by only one sensor node at a time,
differently from monitoring applications that use several sensors to mea-
sure the environmental parameters. As a result, tracking applications are
less tolerant to delays and single point of failures, and the computation in
the sensor nodes is heavier because they tend to oversample the data and
avoid missing variations that will eventually happen. Moreover, the data
is usually processed, and only the relevant information is transmitted to
the GWs [80].

Ball movement

The first dataset used to represent tracking applications was synthetically
created to simulate an object bouncing on the floor a few times. The data
is intended to simulate an object being tracked and can be thought as the
vertical position of a ball that hits the floor after being dropped from a
certain height. The data points were calculated using the formula of a
pendulum with exponential decay [81]:

θ(t) = θ0
|cos(2πλ t)|

eγ t
+ εt, (4.1)

where θ(t) is the height at time t, θ0 is the initial amplitude, λ is the fre-
quency, γ represents the decay, and εt is an additive zero-mean, unit vari-
ance Gaussian white noise. To reproduce different types of movements,
we generated three sequences of data, each one with 3800 data points.
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Figure 4.5a shows the values of the three ball movements that com-
pose the Ball dataset. Each movement has frequency λ = 0.1 hertz and
values were sampled once every five milliseconds. The first set of points
is based on a movement with initial amplitude θ0 = 50 meters and decay
γ = 0.05. The second set of points has greater initial amplitude and de-
cay (θ0 = 100 meters, γ = 0.1), which means that the object moves faster
and results on sparser data that may be less predictable. Finally, the third
set of points has a decay γ = 0.1, and the initial amplitude is 200 me-
ters, which means that the object is faster than before, and, therefore, the
changes are more abrupt and less predictable than in the others. Besides
these differences, their periodicity can be clearly noticed in the plot.

Street runner

This dataset consists of the GPS position of a person while running across
the city of Barcelona. Each position is represented by the respective lati-
tude and longitude coordinates. The data was collected by a GPS-enabled
watch taken by a person in three different days, and each observation was
registered in an interval between one and five seconds after the last one,
summing up to 480 data points. Even though the trajectories are simi-
lar, the measurements contain noise and variations that are expected to be
encountered in other applications for object tracking.

In Figure 4.5b, the Running dataset is shown. The different trajec-
tories among the days are illustrated, and it is possible to observe their
similarity and the absence of periodicity. As we can see in Figure 4.6a,
changes in the latitude are abrupt and do not follow any pattern. On the
other hand, Figure 4.6b shows that the longitude varies almost linearly in
time and is more intuitive than the changes in the latitude.

4.4 Experimental results
The first step to validate the efficiency of forecasting methods in DPSs
is to apply the different methods over splits of the data collected by real
sensors in various experiments. Each split is defined by a history plus a
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window: the former represents the measurements made in the past and the
latter the measurements to be forecast. The idea of observing different
history and window lengths is to synthesize the evolution of the sensor
nodes’ memory and computational capacities. Hence, the experimental
results illustrate the comparison between different configurations and how
the sensor nodes’ evolution impact the forecasts’ accuracy.

4.4.1 Parameter study

From now, we define as a scenario each combination of history and win-
dow lengths observed in a dataset. In the experiments, for example, a
scenario with history length 100 and window length 10 in the Ball dataset
has been represented by 600 splits of data randomly picked from that
dataset.

Before testing each scenario and the different forecasting methods, we
detail their characteristics in the following.

Datasets

The tests were made using all the datasets presented before: Intel, Sen-
sorscope, Ball and Running. Each dataset is composed of three groups
of data, i.e., Intel and Sensorscope have three different sensors each, Ball
was constructed using three different parameter configurations and Run-
ning contains data from three different days. Particularly, the Running
dataset was separated along two dimensions (latitude and longitude), and
considered as two distinct sets of data.

Finally, the forecasts were made based on 200 splits of data randomly
picked from each group. This setup represents the data heterogeneity
expected in different sensor networks.

Forecasting methods

In our experiments, we tested the forecasting methods that are broadly
used in data applications, thanks to their scalability and reliability: the
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Method Preprocessing
time complexity

Runtime
complexity

Space
complexity

Constant O(1) O(1) O(1)
Linear O(1) O(w) O(1)
SM O(h) O(1) O(1)
ES O(k3 h) O(w) O(1)
ARIMA(p, d, q) O(k3 h2) O((p+q)w) O(max(p, q+1))

Table 4.1: List of forecasting methods and their complexities3.

Constant, Linear, Simple Mean (SM), ES, ARIMA and ANN methods2.
The computing complexities of the tested methods are summarized in Ta-
ble 4.1. Usually, the complexities are given in function of the number of
values used to choose a forecasting model (h) and the number of values
that will be forecast (w). In some cases, other specific method parameters
(p, q, and k) also impact the algorithms’ complexity. Usually, 0 ≤ p ≤ 2,
0 ≤ q ≤ 2 and 0 ≤ k ≤ 10.

We highlight that ES and ARIMA models use sets of parameters to
forecast new values, which does not happen if the Constant method is
adopted. As explained before, in some DPSs, the prediction models’ pa-
rameters must be transmitted (from sensor nodes to the GWs, or vice-
versa), and this can either be done by triggering a new transmission or
simply by attaching them to a measurement transmission. Therefore, if
we use ES or ARIMA to predict only one value, we cannot reduce the
number of transmissions, given that the model will have to be updated
after each measurement. In fact, updating the model after each measure-
ment will also increase the energy consumption in the sensor nodes, given
that their parameters require an extra computational time inexistent in the
Constant method.

2In Appendix B, we describe each forecasting method in detail.
3ANNs are not included in Table 4.1 because they are soft computing solutions that

cannot be bounded by a computational time limit [82, 83].
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History

The history is the set of data points used during the initialization phase,
and its length impacts the preprocessing time complexity, i.e., the com-
puting time required to set up the best prediction model’s parameters.
Thus, the simplest methods, such as the Constant and the Linear, are not
affected by the history length, but the time spent to set up an ARIMA
model increases quadratically according to the history length and must be
considered before its adoption in sensor nodes with critical memory lim-
itations. We examined cases in which the history length varied among 5,
10, 20, 50, 100, 200, 500 and 1000.

Window

The window is the set of values that must be forecast. These values rep-
resent future measurements and, therefore, they are only considered to
measure the predictions’ accuracy. The window length might affect the
runtime, which can be either constant or increase linearly, as shown in
Table 4.1. We experimented scenarios where 1, 5, 10, 20, 50, 100, 200,
500 and 1000 values were predicted at a time.

4.4.2 Effectiveness of the forecasts

To define if a transmission could be avoided using a DPS, it is necessary
to annotate, firstly, which values are relevant in a scenario. Measures of
predictions’ accuracy are useful to compare numerical differences, but
they do not provide the practical benefit that the predictions would repre-
sent in a real scenario. For example, a sensor network that is measuring
the temperature in a data center might require higher precision than one
placed in the mountains, because the indoor temperature may be used to
control an air conditioning system that avoids damages from excessive
heat.

To evaluate the effective impact of each forecasting method, we as-
sume that if the absolute difference between the actual measurement and
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the predicted value is smaller than an acceptance threshold τmin, the cur-
rent measurement does not provide valuable information to the network
and its transmission might be avoided. To estimate the number of trans-
missions that could be avoided using a DPS, we first calculate how many
transmissions could be avoided if the Constant method were used. Then,
we compare the results with the ES and ARIMA methods, which were
the only methods that could forecast as accurate as the former one in our
preliminary observations4.

We highlight that inaccurate forecasts trigger the transmission of the
real measurements to the GW. Then, if the Constant method has been
adopted, each new measurement can be used to forecast new values, re-
setting the forecasting window. On the other hand, the ES and ARIMA
methods may trigger (at least) one new transmission to establish the same
forecasting model in the sensor node and the GW. Therefore, we made a
fair comparison by focusing only on the scenarios in which the ES and
ARIMA methods could reduce at least two transmissions more than the
Constant method. To estimate the percentage of avoided transmissions,
we considered that the window length was the maximum number of mea-
surements that could be transmitted, which would happen if all forecasts
were inaccurate.

Results without quality loss

To observe if it is possible to reduce the number of transmissions using
forecasting methods without reducing the quality of the measurements,
we adopted the smallest values possible for τmin: the resolution of the
sensors used in each experiment. A sensor’s resolution is the smallest
measurement that can be indicated reliably, e.g., if a temperature sensor’s
resolution is 0.01oC, it cannot precisely measure the difference between
20.001oC and 20.007oC. In this case, we could assume that any change
smaller than 0.01oC in the temperature is never relevant; therefore, if a
forecast differs by less than 0.01oC from the real observation, it will be
considered accurate and will not trigger a transmission from the sensor

4In Appendix B, we detail our preliminary tests over the data used in this Chapter.
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node to the GW.
To estimate the number of transmissions that could be avoided without

affecting the data quality, we considered the following values of τmin in
each dataset:

• Intel dataset: 0.01oC. Since the specification of Mica2Dot5 does
not include the temperature sensor’s resolution [84], we defined
τmin as the minimum difference between any pair of measurements
observed in the original data. On a side note, we highlight that
it is the same resolution of Sensirion SHT11 [85], a temperature
sensor broadly used in several wireless sensor nodes similar to
Mica2Dot [86].

• Sensorscope dataset: 0.045oC. TinyNode6 uses an analog tem-
perature sensor (LM20) that can measure from −55oC to
130oC and the microcontroller has a 12-bit analog-to-digital con-
verter [87]. Therefore, we calculated the sensor’s resolution as
(130 − (−55)) / 212 oC.

• Ball dataset: 0.001 meters. As a reference, we adopted the spec-
ification of the AR3000 sensor, a long range laser sensor that can
accurately measure distances of up to 300 meters [88].

• Running datasets: 8.38 · 10−8 degree. We defined the τmin as the
minimum difference between any pair of measurements observed
in the data, because the sensor’s specification is not publicly avail-
able. This value represents nearly 1 centimeter of distance along
the latitude direction and around 0.7 centimeters along the longi-
tude orientation [89].

Table 4.2 shows the percentage of absolute differences between con-
secutive measurements that are below or equal the τmin. Note that only the
Intel and the Sensorscope datasets have consecutive values such that their

5Mica2Dot motes were used to collect the measurements in the Intel dataset.
6TinyNode motes were used to collect the measurements in the Sensorscope dataset.
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Dataset Group 1 Group 2 Group 3
Intel 58.13% 46.36% 60.14%

Sensorscope 61.36% 33.02% 33.78%

Table 4.2: Percentage of absolute differences between consecutive mea-
surements that are not greater than τmin in the dataset groups used in the
experiments.

absolute difference is smaller or equal than τmin, due to the consecutive
similar measurements and the missing values filled beforehand.

Figure 4.7 shows the percentage of transmissions that could be
avoided using the Constant, ES, and ARIMA methods. For this represen-
tation, we did not consider any extra transmission that could occasionally
be required to transmit the forecasting models’ parameters. However, as
explained above, we included only the cases in which the ES and ARIMA
methods accurately predicted, on average, at least two values more than
the Constant method.

The results show that the Constant method is the best option when the
window length is smaller than 20. Curiously, in our preliminary results,
the Constant method was regularly less accurate than the ES and ARIMA
methods when the window length was 1, 5 or 10. This difference illus-
trates the importance of analyzing the real effectiveness of the forecasts
when applied to real use cases.

Considering all scenarios, the greatest improvement of a forecasting
method in comparison with the Constant method was observed in Sen-
sorscope when the window length was set to 20. In such cases, the num-
ber of transmissions avoided using ARIMA was 18.1% greater than using
the Constant method, i.e., the ARIMA models could accurately forecast
nearly 3.9 measurements more than the Constant method. In this scenario,
the ARIMA method could be used to avoid an average of 6.33 transmis-
sions every 20 measurements, which represents a reduction of 31.65% in
the number of transmissions.

Regarding the history length, we observed that increasing the number
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of values in the history from 100 to 200 increased the number of avoided
transmissions in 70% of the cases illustrated in the plot. In general, the ES
models could reduce more transmissions when the history length was be-
tween 100 and 200, while the ARIMA models also performed well using
only 50 values. These results suggest that the ES and ARIMA methods
can be more accurate and bring improvements when the history length is
increased up to 200 (and not to 500 or 1000).

As a baseline for comparison, we programmed a TelosB [36] mote
running Contiki [90] without any optimization. Besides a simple appli-
cation that reported temperature periodically, there was enough space to
include one floating point array with length up to 1350. Therefore, it
would not be possible to configure this sensor node to forecast a scenario
with window length 1000 and history length 500 (or vice-versa), but it
would be possible to adopt history and window lengths of 200, for exam-
ple. In conclusion, based on the results observed before, a TelosB mote
has enough memory and the computing power necessary to reduce its
transmissions using the ES or ARIMA methods.

Results with different sensors’ resolution

Considering the four cases illustrated in Figure 4.7, more than 45% of the
absolute differences between consecutive measurements were below the
acceptance threshold (see Table 4.2). Such a coincidence suggests that if
sensor nodes sample frequent enough to measure similar values, the ES
and ARIMA models will be sufficiently accurate to reduce their number
of transmissions.

Let us consider the hypothetical sequence of temperature values mea-
sured at periods of one minute between each other by a sensor with reso-
lution equal to 0.1oC:

{20.1oC, 20.1oC, 20.4oC, 20.5oC, 21.7oC, 21.8oC, 21.9oC}.
In this sequence, we can observe only one pair of similar consecutive
values (out of six), i.e., 16.7% of similar measurements.

There are two scenarios that could make this sensor measure a higher
rate of similar values:
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Dataset Group 1 Group 2 Group 3
Intel 0.0098oC 0.0101953oC 0.009653105oC
Sensorscope 0.02137582oC 0.0840074oC 0.07867205oC
Ball 0.9410768 meter 0.9699227 meter 0.9555685 meter

Running (latitude) 3.35276 · 10−5 degree
(∼ 3.72 meters)

3.704801 · 10−5 degree
(∼ 4.11 meters)

3.43658 · 10−5 degree
(∼ 3.81 meters)

Running (longitude) 0.0001015048 degree
(∼ 8.49 meters)

0.0001128204 degree
(∼ 9.43 meters)

0.0001072884 degree
(∼ 8.97 meters)

Table 4.3: New sensors’ resolutions and acceptance thresholds set in order to have similar consecutive
values in 50% of the time.

Dataset window
length

history
length

Saved transmissions
using the Constant

method

Saved transmissions
using another

forecasting method
Intel 20 200 8.59% 20.91% using ARIMA
Sensorscope 20 100 6.87% 21.08% using ARIMA
Ball 50 1000 14.95% 43.03% using ARIMA
Running (latitude) 50 100 0.58% 5.21% using ES
Running (longitude) 5 200 13.91% 51.74% using ARIMA

Table 4.4: Highest improvements in the percentage of saved transmissions.
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1. Reducing the sampling interval. Assuming a linear change in the
temperature, if the same sensor measured at periods of 30 seconds,
it would have been registered the sequence:

{20.1oC,20.1oC, 20.1oC,20.2oC, 20.4oC,20.4oC,
20.5oC,21.1oC, 21.7oC,21.7oC, 21.8oC,21.8oC, 21.9oC},

where the highlighted values are the new measurements. In this
sequence, we can observe five pairs of similar consecutive values
(out of 12), i.e., 41.6% of similar measurements.

2. Changing the sensor resolution. If the sensor’s resolution was
0.5oC, the original sequence (with one measurement per minute)
would have been registered as:

{20.0oC, 20.0oC, 20.5oC, 20.5oC, 21.5oC, 21.5oC, 22.0oC}.

In this sequence, we can observe three pairs of similar consecutive
values (out of six), i.e., 50% of similar measurements.

To observe the impact of the similarity between consecutive values
in the number of transmissions avoided using the same forecasting meth-
ods, we changed the acceptance thresholds and simulated new sensors’
resolutions in each Group. The new values (shown in Table 4.3) were
chosen such that the probability of observing two similar consecutive val-
ues was 0.5. This change is equivalent to changing the sensors’ sampling
interval to a value in which the measurements are the same as the last one
measured in 50% of the time.

After obtaining the desired scenarios, we observed the number of
transmissions that would have been saved using a DPS. Table 4.4 shows
the greatest reductions in the number of transmissions after setting new
resolutions for the sensors. We can observe that it is possible to reduce the
number of transmissions regardless of the application type, even though
each dataset has a different average percentage of avoided transmissions
per window length. In the best case, the ARIMA models could reduce
more than 50% of the transmissions in the Running (longitude) dataset,

70



which represents a significant improvement especially taking into consid-
eration its potential to improve the end-to-end throughput and reduce the
delays in other tracking applications.

Figures 4.8 and 4.9 include all the cases in which the ES and ARIMA
models accurately predicted, on average, at least two values more than
the Constant method. In comparison with the previous results, now it is
possible to observe cases in which there is a reduction in the number of
transmissions with a smaller window (lengths 5 and 10). However, similar
to the previous tests, the vast majority of the improvements using ES and
ARIMA needed between 50 and 200 values in history. Moreover, when
the window length was set to 1000, the ES and ARIMA models could
reduce the number of transmissions only in the monitoring applications.
This difference may have happened due to the nature of the measurements
and an eventual seasonality in the observations.

4.5 Summary

The first generation of wireless sensor nodes (e.g., Mica2Dot, TinyNode,
and TelosB motes) has constrained energy resources and computational
power, which discourages applications to process any task other than mea-
suring and transmitting towards a central server. However, nowadays,
sensor networks are part of the IoT, and the software and hardware evo-
lution may change the old strategy of avoiding data computation in the
sensor nodes.

In this Chapter, we showed that it is possible to reduce the number
of transmissions using forecasting methods without reducing the qual-
ity of the measurements provided by the sensors. The effectiveness of
such methods, however, may vary from sensor to sensor even if the envi-
ronment and the phenomena observed are the same. The decision about
whether to adopt forecasting methods or not can be made based on the
expected reduction in the number of transmissions. This value can be es-
timated after observing the sensor nodes’ computing capacities and esti-
mating the forecasts’ accuracy that a method will have in the environment
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under observation.
We conclude that there is an old paradigm that is no longer the most

beneficial, which is the strategy of always transmitting a measurement
when it differs by more than a threshold from the last one transmitted.
Adopting more complex forecasting methods in DPSs is an alternative to
significantly reduce the number of transmissions without compromising
the quality of their measurements, and therefore support the exponen-
tial growth of the IoT. In our experiments, we could simulate the sen-
sor nodes’ hardware evolution by increasing window and history lengths.
However, empowered by cloud services, GWs will be ready to produce
more accurate predictions using advanced AI techniques. In the next
Chapter, we make a theoretical analysis about the impact of predictions’
accuracy in WSNs with dozens of sensor nodes.
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Chapter 5

A MODEL FOR DUAL
PREDICTION SCHEMES

Prediction algorithms and other AI techniques tend to become more ac-
curate within time. To achieve higher accuracy levels, new methods com-
pute higher amounts of data from more sources in less time. Thus, we
cannot expect that designing sensor nodes with better MCUs will be suffi-
cient to perform more accurate predictions because of their limited access
to external information about the environment. Fortunately, considering
the architecture proposed in Chapter 2, we can expect that GWs will at-
tend the requirements of the most accurate prediction methods. Hence,
sensor nodes can exploit such a higher accuracy if they work in collabo-
ration with GWs in DPSs.

Based on statistical theory, we propose, in this Chapter, a WSN trans-
mission model that will consider the predictions’ (in)accuracy and the cor-
relation between measurements made by different sensor nodes in a typi-
cal monitoring application [91]. This model will provide a reliable foun-
dation for future (scalable) optimizations using prediction-based strate-
gies. In the end, we will use the proposed model to evaluate the impact of
DPSs in the number of transmissions in a WSN and compare our estima-
tions with results obtained through simulations.
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5.1 A WSN transmission model

At the application layer, sensor nodes are usually organized as sensor
networks with two fundamental roles: GWs and ordinary sensor nodes.
Ordinary sensor nodes are typically close to the data origin and may just
perform default sensing tasks and transmit their measurements via radio
to a GW. GWs are responsible for forwarding the gathered data to WSNs’
managers and for disseminating occasional instructions and updates to
sensor nodes.

5.1.1 Original model

Langendoen and Meier [92] presented a ring model for WSN topologies
to describe a multi-hop network based on the average number of neigh-
bors (C) of a sensor node and the number of hops from the GW to the
furthest nodes (D). Assuming a uniform node density on the plane and
defining it as C + 1 nodes per unit disk, the first ring (d = 1) is expected
to have C nodes. Figure 5.1 shows an example of a sensor network based
on this model with D = 3 and C = 5.

In this model, the GW is always in ring zero, and transmissions made
by a component (either the GW or a sensor node) can reach neighbors that
are up to one unit of length from it. The set of neighbors of a sensor node i
is defined by all sensor nodes in the unit disk centered in i. The unit disk
represents the sensor node’s transmission range and does not necessarily
imply that neighbor sensor nodes will establish a direct communication at
the routing layer.

In fact, communication links are defined by underlying routing proto-
cols. Langendoen and Meier assumed that these protocols aim to keep the
smallest number of hops in a WSN and that sensor nodes only transmit
to sensor nodes in the previous ring, i.e., the next ring closer to the GW.
For example, to reach the GW from ring d, we can expect a d-hop trans-
mission. Therefore, the distance from the GW also defines in which ring
a sensor node is placed.

The expected number of sensor nodes Nd in ring d can be calculated
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Figure 5.1: Sensor network model based on the density of the sensor
nodes and their coverage. Each node has an average of five (C = 5)
neighbors at the physical layer, and the vertices represent communica-
tion links established in an average (optimistic) scenario. The dark circle
represents the GW.

based on the surface area of the annulus1:

Nd =

{
0, if d = 0

Cd2 − C(d− 1)2 = (2d− 1)C, otherwise
(5.1)

The number of nodes in the WSN is equal to CD2. Given that the first
ring has C sensor nodes, it is expected C branches starting in the GW
with D2 sensor nodes each. In this work, each of these branches will be
referenced as a sub-tree.

Assuming a sensor node in ring d, the expected number of direct chil-
dren (Id) can be calculated by the relation Nd+1/Nd. This value does not

1The region bounded by two concentric circles.
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depend on the value of C:

Id =

{
0, if d = D
2d+1
2d−1

, otherwise
(5.2)

5.1.2 Model extension
We assume that the number of transmissions and receptions made by sen-
sor nodes is the primary concern in monitoring applications, not only due
to the challenges to access the medium but also due to the energy re-
quired for the external communication. Although these challenges are
commonly observed in irregular real-world topologies, they are often ne-
glected by other models, due to their complexity [51]. Having said that,
we highlight that the main advantage of this model is its simplicity to
identify and describe the operation of the bottlenecks in a sensor network,
i.e., the sensor nodes in the first ring.

In this work, we will extend the original model and derive the number
of transmissions based on the sensor nodes’ positions. First, we define
the set of children nodes of a sensor node i in ring d as Hi,d. We define
the expected cardinality of Hi,d as Kd. The value of Kd is the number
of direct children times the expected number of their children plus one
(representing themselves):

Kd , |Hi,d| =

{
0, if d = D

Id(Kd+1 + 1), otherwise.
(5.3)

Recall that the expected number of sensor nodes is CD2, and the first ring
is expected to have C nodes. Thus, the expected number of children of
the sensor nodes in the first ring (i.e., K1) is D2 − 1 if D > 1.

Node-to-GW transmissions

In monitoring applications, sensor nodes usually measure and transmit
their data at a pre-defined time interval (1/f ) that can vary from few sec-
onds to hours. The number of measurements per second (f ), the period
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Parameter Description
f Number of measurements per time slot
T Period between the choice of two new prediction models
C Expected number of neighbors of each sensor node
D Expected number of rings/hops in the sensor network
ρ Correlation between measurements in a sub-tree
α Expected prediction’s accuracy

Table 5.1: Parameters taken into account to calculate the number of trans-
missions and receptions using the model.

between predictions (T ) and the other parameters shown in Table 5.1 may
vary from case to case.

In the simplest approach, measurements are transmitted right after
their creation. We will assume this behavior as the baseline for further
comparisons. Alternatively, these transmissions, which we call node-to-
GW, may not happen right after measurements’ creation if sensor nodes
aggregate the data received from other sensor nodes or past measure-
ments. The impact of aggregating transmissions will also be modeled
in the following.

Given that sensor nodes must forward data from their children towards
the GW, the expected number of transmissions (Sd) during a period of
1/f seconds in a sensor node i in ring d is

Si,d = (Kd + 1), (5.4)

and the number of receptions is

Ri,d = Kd. (5.5)

Finally, the total number of transmissions during a period T in a sensor
node i is the sum of transmissions and receptions:

Xi,d = Sd +Rd

= ((Kd + 1) +Kd) fT

= (2Kd + 1) fT .
(5.6)
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Based on (5.3), we can affirm that K1 > Kd, if d > 1. Applying this
inequality to (5.4), (5.5), and (5.6), we mathematically show that, if d > 1,
then Si,1 > Si,d, Ri,1 > Ri,d, and X i,1 > X i,d. Thus, in a homogeneous
sensor network, sensor nodes in the first ring make more transmissions
and are the bottlenecks that limit the number of transmissions in their sub-
trees, according to their capacity. It shows the importance of focusing on
optimizing the number of transmissions in the first ring because it can
prevent new sensor nodes of being appended to the network2.

GW-to-node transmissions

GW-to-node transmissions are those initiated by the GW, for example, to
change a configuration or update the software in the sensor nodes. As-
suming one unicast transmission per packet, if the GW transmits a packet
to every sensor node in the WSN, a sensor node i in ring dwill receive one
GW-to-node transmission to itself, plus Kd transmissions (one per child),
which must be forwarded towards their receivers. Therefore, the number
of transmissions and receptions at a sensor node i in ring d is

S∗i,d = Kd, (5.7)

and
R∗i,d = Kd + 1. (5.8)

In this case, the number of transmissions made by the GW to a sub-
tree is D2, i.e., the number of nodes in each sub-tree. Therefore, a sensor
node in the first ring will make K1 +1 = D2 receptions and K1 = D2−1
transmissions.

5.2 Modeling Dual Prediction Schemes
As explained in Chapter 4, DPSs exploit the proximity of the sensor nodes
to the sources of the data, avoiding unnecessary transmissions and han-

2In Appendix C, we use this model to detail the importance of reducing the number
of transmissions in a WSN.
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dling occasional sensor nodes’ hardware limitations that might reduce
WSNs’ lifetime. A DPS has two tasks that may be executed either by
GWs or by sensor nodes, namely the prediction model choice and the pre-
diction model dissemination. The dissemination is the process of trans-
mitting the prediction model either from sensor nodes to the GW or from
the GW to sensor nodes.

In the following, we describe the impact of these tasks in the network
load, concerning the number of transmissions. Before that, we discuss the
assumptions and limitations of this model.

5.2.1 Assumptions and limitations

In this model, we assume that the quality of the measurements provided
by a WSN can be scaled as “acceptable” if the values at the GW do not
differ by more than a certain threshold. Since sensor nodes can com-
pare their predictions with real measurements locally (without making
any transmission), no transmission will be required if a prediction is ac-
curate, i.e., it does not differ by more than an accepted threshold from the
measured value.

In some cases, WSNs’ managers have no information about the statis-
tics of the data that is going to be retrieved by the sensor nodes. Thus,
it may be necessary a long initialization phase before starting to make
predictions. For example, schemes that use advanced prediction methods,
like ANNs, require larger amounts of data to find stable models, due to
their high complexity and the vast number of parameters to estimate [93].
We do not include this phase in this model because we assume that the
GW has no energy constraints.

Finally, in this work, we do not expect distributed algorithms, i.e.,
sensor nodes do not have to synchronize with their neighbors. However,
this can be easily extended from our model, given the number of expected
neighbors of each sensor node.
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5.2.2 Prediction model choice and dissemination
In a DPS, the same prediction model is shared between a sensor node and
the GW. Each sensor node (or group of sensor nodes) has its prediction
model, and the prediction models in a WSN can be independently chosen
by both (sensor nodes and GW) without making any new transmission.
Alternatively, prediction models can be chosen in the GW or in sensor
nodes. In case that prediction models are chosen in sensor nodes, the GW
must receive the parameter values and, in some cases, also the prediction
method selected. On the other hand, if the GW is responsible for choosing
prediction models, sensor nodes must be informed about the decisions
taken.

Assuming that the dissemination of a prediction model is made
through a unicast transmission, sensor nodes in the first ring will receive
and forward every transmission to their children towards the proper des-
tinations. Thus, if the GW is responsible for generating the prediction
models, the sensor nodes in the first ring will have to forward the trans-
missions to their children. In such cases, a sensor node in the first ring
will receive D2 packets. From these packets, D2− 1 will be forwarded to
its children. Therefore, to disseminate the prediction models generated in
the GW, there will be

XDIS-GW = R∗i,1 + S∗i,1

= D2 + (D2 − 1)

= 2D2 − 1

(5.9)

transmissions (including receptions) in each sensor node in the first ring.
Analogously, in case that prediction models are chosen in the sensor

nodes, every sensor node in the first ring will make D2 transmissions to
the GW after receiving D2 − 1 prediction models. Thus, the number of
transmissions at the first ring will be, once again, equal to 2D2 − 1.

If packets to the same sub-tree are aggregated, sensor nodes in the first
ring will receive only one packet that will be split before being retrans-
mitted to their direct children in the second ring. In such cases, a sensor
node in the first ring will need
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XDIS-GW-AGG = XDIS-SN-AGG = I1 + 1 (5.10)

transmissions to disseminate the prediction models, where, from (5.2),
I1 = 3, if D > 1.

Finally, if the GW uses broadcast (or multicast) transmissions, sensor
nodes will receive and forward only one packet, i.e.,

XDIS-GW-BC = 1. (5.11)

5.2.3 Impact of predictions in the number of transmis-
sions

As described before, adopting a data prediction scheme can benefit the
WSN reducing the number of transmissions and optimizing the medium
access control, which may eventually reduce energy consumption and ex-
tend the WSN’s lifetime. To estimate the number of transmissions in
homogeneous networks, we develop a formula based on the predictions’
accuracy and the correlation of the monitored data.

Let us assume that αi is the accuracy of the predictions in sensor node
i, i.e., αi is the probability that a measurement of i matches to the pre-
diction and does not have to be transmitted to the GW, and αci = 1 − αi.
Therefore, the expected number of transmissions and receptions in a sen-
sor node i during a time interval of 1/f seconds (i.e., between two mea-
surements) is respectively represented by S ′i,d and R′i,d as

S ′i,d = αci +
∑
j∈Hi,d

αcj , (5.12)

and

R′i,d =
∑
j∈Hi,d

αcj . (5.13)

Considering an eventual dissemination of the prediction models, the
expected number of transmissions and receptions during a period of T
seconds is
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X ′i,d = (S ′i,d +R′i,d)fT +XDIS

= (αci +
∑
j∈Hi,d

αcj +
∑
j∈Hi,d

αci)fT +XDIS

= (αci + 2
∑
j∈Hi,d

αcj)fT +XDIS

(5.14)

Note that a low accuracy in predictions used in sensor nodes that are
far from the GW has a higher impact on the total number of WSN trans-
missions than a low accuracy in predictions used in sensor nodes in the
first rings. However, concerning the number of transmissions at a single
sensor node, the bottleneck of the WSN is still represented by the sensor
nodes in the first ring.

Let us define the minimum average accuracy (αmin) necessary to re-
duce the number of transmissions, according to the size of the network
and its number of rings. This value can be used to define the maximum
number of transmissions (S ′i,d,max) and receptions (R′i,d,max) in a sensor
node i in ring d:

S ′i,d,max = (1− αmin) +
∑
j∈Hi,d

(1− αmin)

= (1 +Kd) (1− αmin)

(5.15)

and

R′i,d,max =
∑
j∈Hi,d

(1− αmin)

= Kd (1− αmin)

(5.16)

Recall that Kd , |Hi,d|, for a sensor node i in ring d. Therefore,

X ′i,d ≤ ((1 +Kd) (1− αmin) +Kd (1− αmin))fT +XDIS (5.17)
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Finally, the use of predictions will reduce the number of transmis-
sions if X ′i,d < Xi,d. After some mathematical development shown in
Appendix D, we arrive at the following expression for the minimum av-
erage accuracy of the predictions:

αmin >
XDIS

(2D2 − 1)fT
(5.18)

In conclusion, if prediction models are not independently generated
in GWs and sensor nodes, the DPS requires a minimum accuracy to en-
sure the reduction in the number of transmissions. Thus, extra transmis-
sions used to disseminate new prediction models may turn the prediction
scheme into an inefficient option. Hence, the efficiency of a DPS also
depends on how many transmissions are required for disseminating the
prediction models because the number of transmissions will be propor-
tional to the number of hops between sensor nodes and the GW.

Moreover, the minimum accuracy is a lower bound that depends only
on the network layout (i.e., the number of rings D), the frequency of the
measurements (f ) and the time between two predictions (T ). Therefore,
if the predictions’ accuracy does not reach this limit, there will exist three
actions to improve the network operation, either to set new values for f
and T , to adopt a DPS with independent model generation, or to turn the
DPS off.

5.2.4 Impact of predictions and aggregations
Additionally to DPSs, it may be possible to adopt aggregation schemes
in sensor nodes, such that a sensor node aggregates data received from
its children and transmits only after making its measurement. In the fol-
lowing, we model an aggregation scheme and compare its efficiency with
the use of DPSs. Finally, we estimate the reduction in the number of
transmissions if both techniques are simultaneously adopted.

To make it clear for the reader, we introduce a scenario with only two
sensor nodes to clarify the normalization of the data and its application.
Later, we will extend the model to a more complex scenario with D rings.
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Figure 5.2: Values of Yi and Yj are correlated (ρi,j = 0.7), and each line
represents a different density of points.

Network with two sensor nodes

Let us consider a section of the sensor network with the GW and a sensor
node i with a single child j. Due to the sensor network’s topology, trans-
missions from sensor node j can reach the GW only through i. Thus,
every 1/f seconds, i may transmit to the GW if its prediction has failed
or if it had happened to j.

We assume that the measurements of i and j follow the Normal distri-
butions respectively represented by Yi = N(µi, σ

2
i ) and Yj = N(µj, σ

2
j ).

Such a Multivariate Normal (MVN) distribution can be defined based on
the correlation between their values, i.e., the relationship between each
pair of measurements made by i and j. An illustration of the MVN den-
sity containing Yi and Yj is shown in Figure 5.2.

Assuming that the predictions (ȳ) are not biased (i.e., ȳ = µ), we may
also approximate them to Normal distributions3 and label an outcome as

3In Appendix E, we detail how to estimate the predictions’ accuracy for normally
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incorrect whenever a measurement falls outside the interval defined by the
accepted threshold ε. In such cases, the probability that the sensor node j
will transmit (including its measurement) after 1/f seconds is 1 − αj .
Hence, the probability of i receiving a packet is also 1 − αj .

Similarly, i will transmit if the prediction about its measurement fails
(i.e., it falls out of the accepted threshold εi) or if the prediction in sensor
node j had failed and a measurement has been received. In other words,
there will be a transmission if at least one of the two predictions fail.

If i can aggregate transmissions, its total number of transmissions is
not a simple sum as in the case without aggregation because it depends
on the correlation of the measurements of i and j. Let us assume that
the correlation between Yi and Yj is defined by the Pearson correlation
coefficient and represented by ρi,j . Therefore, to model the probability of
having at least one wrong prediction, we must calculate the correlation
matrix (Σ), which is defined as

Σ =

[
σ2
i ρi,j σiσj

ρi,j σiσj σ2
j

]
(5.19)

Finally, given the lower limits

li = ȳi − εi and lj = ȳj − εj, (5.20)

the upper limits
ui = ȳi + εi and uj = ȳj + εj, (5.21)

and the correlation matrix (Σ), it is possible to calculate the following
MVN probability:

F (yi, yj) =
1√

|Σ|(2π)2

∫ ui

li

∫ uj

lj

e(−
1
2
θtΣ−1θ)dθ (5.22)

The value of F (yi, yj) represents the probability that both predictions
(in i and j) are correct and can be illustrated by the density inside the
crosshatched rectangle in Figure 5.3. Thus, the probability of at least one

distributed measurements, based on the user’s accepted threshold for errors.
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Figure 5.3: The hashed rectangle in the center illustrates the points in
which both predictions (ȳi and ȳj) are correct.

prediction failing can be calculated as (1 − F (yi, yj)), which, in fact, is
the probability of sensor node i making a transmission after 1/f seconds.

Finally, considering occasional extra transmissions to disseminate the
prediction model, the number of transmissions at j during a period of
T seconds can be calculated as (1 − αj)fT + XDIS, and the expected
sum of transmissions and receptions at sensor node i during a period of T
seconds can be modeled as ((1 − F (yi, yj)) + (1 − αj))fT +XDIS.

Larger networks

Now, we will extend the previous example to larger sensor networks. The
correlation matrix (Σ) of several data distributions can be calculated as
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Σ =


σ2
a ρa,b σaσb · · · ρa,z σaσz

ρb,a σbσa σ2
b · · · ρb,z σbσz

...
... . . . ...

ρz,a σzσa ρz,b σzσb · · · σ2
z

 , (5.23)

and, similarly to the two-dimensional model, the expected number of
transmissions made by sensor node i in ring d (represented by S ′′i,d) de-
pends not only on its predictions but also on the predictions used in all of
its children. The value of S ′′i,d can be calculated as

S ′′i,d = 1− F (i, a, b, . . . , z), (5.24)

where {a, b, . . . , z ∈ Hi,d}, and the function F is the MVN probability
function integrated from the lower accepted limits to the upper accepted
limits over the k = 1 +Kd distributions:

F (i, a, b, . . . , z) =
1√

|Σ|(2π)k

∫ ui

li

∫ ua

la

∫ ub

lb

· · ·
∫ uz

lz

e(−
1
2
θtΣ−1θ)dθ,

(5.25)
which can be efficiently calculated with the use of Monte Carlo methods
for higher dimensions [94].

The number of receptions at i (R′′i,d) is slightly different from the pre-
vious example, since now the sensor node may have several children in
the next ring, and their transmissions happen independently. Let us define
H ′i,d as the set of direct children of i. Thus, |H ′i,d| , Id. The expected
number of receptions can be calculated as

R′′i,d =
∑
j∈H′i,d

S ′′j,d+1, (5.26)

and the total number of transmissions and receptions is defined by

X ′′i,d = (S ′′i,d +R′′i,d)f T +XDIS. (5.27)
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Even though the function F has no closed formula, it is possible to
set a lower bound based on a case when there is absolutely no correlation
between the values measured by i and its children. When the correlation
is equal to zero, the expected number of transmissions and receptions at
sensor node i are the maximum possible. Considering that there will exist
a transmission if at least one prediction fails, the probability of having no
transmissions at i is α1+Kd . Thus,

S ′′i,d,max = 1− α1+Kd . (5.28)

Recall that i is expected to have Id direct children and each child be
part of a sub-tree with Kd/Id sensor nodes. There may exist Id indepen-
dent receptions at i, and each reception may not occur with probability
αKd/Id . Thus,

R′′i,d,max = Id (1− αKd/Id). (5.29)

Therefore,

X ′′i,d ≤ [ (1− α1+Kd) + Id (1− αKd/Id) ]f T +XDIS. (5.30)

We claim that X ′′i,d ≤ X ′i,d, which means that a mechanism
that aggregates the data will not make more transmissions than the
one that only makes predictions. Comparing (5.30) with (5.17), we
have that for any α ∈ [0, 1] and Kd ≥ 0, it can be shown4 that
(1− α1+Kd) ≤ ((1 +Kd)(1− α)) and, hence, S ′′i,d,max ≤ S ′i,d,max. More-
over, R′′i,d,max ≤ R′i,d,max and Id (1 − αKd/Id) ≤ Kd (1 − α), which can
be similarly proved to be true, since (Kd/Id) ≥ 1 when Kd > 0 and
α ∈ [0, 1]. In case of being in the last ring, since there are no children
(Kd = Id = 0), no reception is made.

5.3 Model experimentation
Using the model presented before, we can estimate the effects of adopting
a prediction or an aggregation scheme in a sensor network, concerning the

4Based on the proof detailed in Appendix F.
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number of transmissions and, eventually, the energy consumption levels.
In this Section, we make a parameter study over the model parameters
C, D, ρ, and α. Our goal is to observe how the number of transmissions
varies in different scenarios and validate the model using simulations with
normally distributed data.

5.3.1 Simulation setup

In OMNET++ [59], we simulated TelosB motes [36] using a TDMA-
based MAC protocol. In the MAC protocol adopted, each sensor node has
a reserved slot to transmit. Therefore, we did not experience collisions
during the transmissions, and there was no overhearing. We highlight
that other MAC protocols may obtain different results, due to concurrent
transmissions, although we can expect a similar reduction in their number
of transmissions.

Regarding the mechanisms adopted to reduce the number of transmis-
sions, we simulated three combinations: (i) with no prediction and no
aggregation; (ii) with prediction, but no aggregation; and (iii) with aggre-
gation, but no prediction. When data prediction was adopted, the predic-
tion models were chosen in the GW, and GW-to-node transmissions were
always aggregated.

As we showed before, in monitoring applications with DPSs, the
number of transmissions is highly affected by the correlation between
measurements made by the sensor nodes in a sub-tree, and by the
predictions’ accuracy. Therefore, regarding the model parameters,
we observed the impact of different values of ρ, α. Values of ρ
varied among 0.1, 0.2, . . . , 0.9, and 0.95, and values α varied among
0.5, 0.7, 0.9, and 0.95.

Recall that, according to (5.30), the number of transmissions does not
depend on the density of sensor nodes (C), but on the number of rings
(D). Thus, to observe the impact of the growth in the number of sensor
nodes in WSNs, we observed the number of transmissions with values of
D varying among 1, 2, . . . , and 10. Note that, when new rings are added,
the number of sensor nodes increases quadratically if no aggregation is
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Data: n = number of nodes, α = accuracy, ρ = correlation
Result: P (n, α, ρ) = probability that no transmission happens

1 if n = 0 then
2 return P ← 1
3 else
4 q ←| Φ−1

(
1−α

2

)
|

5 Q← {q, q, . . . , q}1×n
6 Y ← {Y1, Y2, . . . , Yn}

7 Σ←


1 ρ · · · ρ
ρ 1 · · · ρ
...

... . . . ...
ρ ρ · · · 1


n×n

8 return P ← Φ (Y,Σ, Q)

9 end
Algorithm 1: Algorithm to calculate the probability that no transmis-
sion will be made.

adopted. However, the number of transmissions does not change if sensor
nodes aggregate them5.

Finally, in our simulations, sensor nodes made one measurement per
minute (f = 1/60), and the GW predicted their measurements once a
day during three days (T = 3 × 86400 seconds). Therefore, each sensor
node made 4320 measurements, from which 1440 happened between each
prediction model choice (in the cases when predictions were adopted).

5.3.2 Simulated algorithm

Assuming normally distributed values, the expected number of transmis-
sions and receptions can be estimated using the cumulative density func-
tions of MVN distributions. Based on (5.25), we designed the algorithm

5In Appendix C, we show that, if the aggregation is not adopted, the number of
transmissions increases cubically.
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described in Algorithm 1. It calculates the probability P of making no
transmissions in a group of n sensor nodes measuring data with correla-
tion ρ if the average predictions’ accuracy is α.

We highlight that, in our model, the number of children is used to
define how many distributions will be used, which means that decimal
values cannot be considered. Hence, we rounded all of them up to the next
integer, which resulted on an upper bound for the number of transmissions
in the simulations.

5.3.3 Number of transmissions
Given that the bottlenecks of a sensor network are the sensor nodes in the
first ring, we calculate the number of transmissions at a sensor node i in
ring d = 1 as

S ′′i,1 = ( ( (1− P (K1, α, ρ) ) f ) + I1 ) T , (5.31)

and the number of receptions as

R′′i,1 = (1− P (K1, α, ρ) ) I1 f T . (5.32)

Figure 5.4 shows the results for all the tested configurations. In larger
sensor networks (D > 4), data aggregation has a higher impact than data
prediction in the number of transmissions, as shown in Figure 5.4a. Sim-
ilar results were observed in another study [66], but the authors did not
realize that the predictions had less impact in the final savings and con-
cluded that such optimal achievements happened due to the high accuracy
of the predictions.

When the predictions are highly accurate, and the number of rings is
small (D ≤ 4), the data prediction has a higher impact on the number
of transmissions if compared with the scenarios where the data is only
aggregated. Figure 5.4b highlights scenarios with less than five rings.

To detail the power of the prediction and aggregation schemes, we
considered a sensor network with five rings in which the aggregation
scheme produces nearly the same number of transmissions observed in
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(b) When number of rings is small
(D ≤ 4), the use of predictions can
lead to fewer transmissions than the ag-
gregation scheme.
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Figure 5.4: The impact of the network size in the number of transmissions
in the first ring.
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Figure 5.5: The effectiveness of the aggregations depend on the correla-
tion between the measurements in a sub-tree.

the scenario with the most accurate predictions. Figure 5.5 highlights the
gains obtained by adopting both schemes. First, we can observe that the
number of transmissions can be reduced to 15% of its maximum in the
best scenario, where the predictions are highly accurate, and the mea-
surements in the sub-tree are highly correlated. Additionally, we did
not observe any significant gains when the predictions were less accu-
rate (around 0.5) nor when the predictions were more accurate (around
0.7), and the correlations were less than 0.7. Finally, with an average cor-
relation (0.5), increasing the accuracy from 0.5 to 0.9 reduced by 30% the
number of transmissions. Meanwhile, with an accuracy of 0.5, increasing
the correlation from 0.5 to 0.9 reduced only by 6.5% the number of trans-
missions, which illustrates that the impact of making accurate predictions
is much higher than having a high correlation between the measurements.

5.3.4 Energy consumption

Based on the number of transmissions and receptions, we can use the
model presented before to estimate the total energy consumption of a sen-

95



sor node i in ring d as

E ′′i,d = S ′′i,dETX +R′′i,dERX + EDIS + EMIN, (5.33)

where ETX and ERX are the extra energy consumption to respectively
transmit and receive one packet,EMIN is the minimum energy necessary to
keep sensor nodes working without transmitting and receiving anything,
and EDIS depends on where the prediction models are chosen:

EDIS =


0, if they are independently chosen
ERX + IdETX, if chosen in the GW and
IdERX + ETX, if chosen in sensor nodes.

(5.34)

To illustrate the applicability of this model, we estimated the energy
consumption in a WSN after three days of operation and compared with
the results obtained in our simulations. For this estimation, we considered
a homogeneous sensor network with D = 5 and C = 3 (i.e., 75 sensor
nodes plus the GW). To obtain the values of ETX, ERX, and EMIN, we sim-
ulated three TelosB motes in OMNET++ transmitting and receiving data
without making any predictions. After one simulated day, we calculated
the average values for each parameter.

So far, we did neither distinguish delays nor packet lengths used in ag-
gregated transmissions and receptions from the case without aggregation.
In fact, in a real implementation, these transmissions could be done in the
same packet types if we adopted simple aggregation functions, such as
the maximum, minimum and the average of the measurements. However,
larger packets would mean higher energy consumption to transmit and re-
ceive, in comparison with the non-aggregated transmissions. Therefore,
to show the extensibility of our model, we used packets with eight times
the payload of the normal packets in the aggregated transmissions.

To illustrate the results, we focused on the energy consumption of
a sensor node in the first ring. As sensor nodes in the first ring must
handle the highest number of transmissions, they consume more energy
than the others. As a consequence of such an energy consumption, these
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Figure 5.6: The model provides reliable results when compared with the
simulations.

sensor nodes can run out of battery earlier than those in the other rings,
which has a substantial impact on the WSNs’ lifetime. In Figure 5.6,
we can see that just adopting the aggregation scheme (without making
predictions) reduces the extra energy consumption to 60% of the total, yet
larger packets are used. The greatest gains, nonetheless, are obtained after
adopting the DPS and the aggregation scheme: they can save up to nearly
92% of the energy consumed by the transmissions. As explained before,
the predictions’ accuracy are more significant and have a higher impact
than the correlation between the measurements in a sub-tree. Hence, a
very low correlation (0.1) with highly accurate predictions (0.95) give
better results than a high correlation (0.9) with an average accuracy (0.5).

In fact, regardless of the values shown in the plot, the exact amount
of saved energy depends on the hardware of the sensor nodes, their OS,
and the MAC protocol in use, besides other configurations. Nonetheless,
the consumption is mainly driven by the relation between the minimum
energy necessary to keep a sensor node making measurements and the
amount of battery required for transmitting and receiving a packet. In
conclusion, the results presented here can facilitate the decision about
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adopting a DPS in a WSN with a similar arrangement, even if the sensor
nodes’ configurations differ from those considered in our investigation.

5.4 Summary
In this Chapter, we presented a mathematical framework to calculate the
gains and benefits of adopting a DPS to reduce the number of transmis-
sions in a WSN. Using the proposed model, we showed that the benefits
of adopting an aggregation scheme are greater than using only predictions
in larger WSNs, and that combining both strategies leads to the highest
savings. Moreover, we observed the most significant savings when we
made accurate predictions in the GW and aggregated intermediate trans-
missions in the sensor nodes. Finally, our simulations also showed that
the predictions’ accuracy has a higher impact than the measurements’ cor-
relation in the total number of transmissions if a DPS is adopted.

The main contribution for the future generations of WSNs is a model
that relies on the statistical theory to show the impact of sensor nodes’
hardware evolution and the predictions’ accuracy in DPSs. This model
can be mainly used to exploit the characteristics of the WSNs to adopt
predictions and improve the utilization of the channel resources. Ad-
ditionally, the proposed model can be extended to calculate the sensor
nodes’ energy consumption and estimate WSNs’ lifetime.
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Chapter 6

CONCLUSION

The IoT is experiencing an exponential growth in the number of inter-
connected devices, sensors, and amount of produced data. Two factors
can disrupt such an expansion: sensor nodes’ energy availability and the
wireless medium access. There is enough evidence to believe that sensor
nodes’ energy consumption can be–at least partially–overcome. Mean-
while, the wireless medium access is pointed out as a problem for the
next generations of wireless networks.

To overcome the latter problem (and possibly minimize the former
one), we focused on the potential benefits of adopting prediction-based
strategies to reduce the number of data transmissions in WSNs. Finally,
we conclude that data that can be predicted does not have to be trans-
mitted and that prediction-based strategies can reduce the number of data
transmissions in WSNs using the state-of-the-art technologies of wireless
sensor nodes and data prediction algorithms.

To reach this conclusion, we first aimed at maximizing the impact of
the latest advances in Data Science on the WSNs. Since there is no con-
sensus about how to compute, analyze or publish data collected by WSNs,
we designed a platform (DAS-Dashboard) that fits the main Data Science
principles concerning sensed data: its collection; description; storage;
maintenance; discovery; visualization; and analysis. This affinity with
the Data Science principles serves as a starting point for a future set of
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standards and solutions that aim to incorporate Data Science techniques
in WSN and IoT scenarios.

Furthermore, centered on the DAS-Dashboard, we designed a self-
managing architecture that incorporates WSNs into IoT environments.
The resulting smart WSNs can exploit the power of AI techniques and
sensor nodes’ proximity to data’s sources to self-manage their transmis-
sions efficiently. From now, similarly to the procedure taken in our exper-
iments, any person can deploy a WSN and host their data server, allowing
remote users to visualize collected data and to outsource the optimization
of their WSNs to external systems. The proposed self-managing archi-
tecture will permit new business models focused on sensor data, once it
provides WSNs’ managers the means to optimize their WSNs simply by
choosing among their preferred prediction scheme (single or dual) and
a cloud service that makes reliable predictions and recommendations for
their applications.

For future generations of wireless sensor nodes and AI techniques,
we provided a theoretical contribution. We experimented state-of-the-art
prediction methods and designed a WSN transmission model that takes
into account the hardware evolution and the consequent use of high com-
plexity algorithms for predictions. The proposed model provides the nec-
essary tools for designing new WSNs, considering the number of sen-
sor nodes, their coverage, the periodicity of their transmissions and the
predictions’ accuracy. Most important, the mathematical analysis of this
model provides us a reliable foundation to adopt prediction-based strate-
gies in future WSNs, besides showing that predictions can extend the im-
provements provided by data aggregation schemes.

Overall, the work presented in this thesis can be extended to incorpo-
rate other prediction methods and data reduction mechanisms in the self-
managing architecture proposed. Future research in the field of WSNs
and IoT can focus on prediction algorithms and computational power to
improve their accuracy, which will permit the improvement of the smart
WSNs’ operations. Moreover, the model used to estimate the number of
transmissions can be validated, in practice, with alternative scenarios and
applications. For instance, focusing on finding a network configuration
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that minimizes the energy consumption in a WSN.
In the long-term, servers used to control WSNs will be able to fore-

cast weather, predict human behavior [95] and infer objects’ positions.
Hence, most of the data about the environment will be generated without
the need of transmitting measurements from sensors; and WSNs will be
only necessary to fix few inevitable mistakes and inform a small num-
ber of unexpected variations. Therefore, it will be critical to rely on the
statistical theory and self-managing architectures that can control other
machines, react to the environments’ evolution and interact with living
beings; and this thesis gives small steps in these two directions.
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Appendix A

HOW TO CHOOSE
PREDICTION MODELS IN
DUAL PREDICTION
SCHEMES?

In general, to choose a prediction model, it may be necessary experimen-
tation, expert opinion or experience [67]. Considering DPSs, prediction
models that can provide more accurate results require more communi-
cation among sensor nodes, larger memory buffers, or longer computing
times. Indeed, the choice of the prediction model may lead to a successful
deployment or promptly make it extremely inefficient [70].

In the literature about statistical methods [96], a common way to
choose a prediction model among a list of options is to adopt an infor-
mation criterion that rewards their accuracy over a training dataset and,
in change, penalize their selection according to the number of parameters
used to compute the predictions. Methods such as Akaike Information
Criterion (AIC), the Bayes Information Criterion (BIC), and AIC with a
correction for finite sample sizes (AICc) are some of the existing options
of information criteria used to estimate the amount of information loss,
given a particular prediction model and a training dataset [97, 98].
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If an information criterion is adopted, the first step is to assess the
predictions’ accuracy, which can be done using measures that attest the
quality of a prediction model in a particular use case. Examples of such
measures are the well-known Mean Square Error (MSE), the Root Mean
Square Error (RMSE), the Mean Absolute Error (MAE), Relative Mean
Absolute Error (RelMAE), the Mean Absolute Percentage Error (MAPE),
the symmetric Mean Absolute Percentage Error (sMAPE), among oth-
ers [99]. Once the accuracy has been measured, the information criterion
will observe the number of parameters used in each model to indicate the
most proper for that situation.

In the literature about DPSs, some mechanisms adopted information
criteria to choose the best prediction models [71], while others adopted
only accuracy measures [32, 64]. However, WSNs have computational
limitations that most networks do not have. Therefore, in DPSs, the de-
cision should be made based on a few aspects that impact the number of
transmissions and the energy consumption in the sensor nodes. For exam-
ple, the number of messages generated by the scheme when the predic-
tion fails and all the engineering concerns, such as the energy consumed
to choose new prediction models and, especially, to transmit their param-
eters.

To overcome the limitations of the traditional methods, Liu et al. cre-
ated a formula to estimate the Prediction Cost (PC). They considered the
percentage of transmitted measurements (r) and the user desired level of
accuracy (α) [74]. Later, an extended model was designed [32]. The new
model is more generic and also considers the prediction models’ memory
footprint (Ec) as a significant computational cost for sensor nodes:

PC = [ αf(e) + (1− α)r ] Ec, (A.1)

where e is the measure of the predictions’ accuracy (e.g., MSE, RMSE,
sMAPE) and f(e) is the accuracy according to the chosen measure. Ac-
cording to this formula, given a list of prediction models, the one with the
lowest PC is the most appropriate to that situation.

Periodically, new prediction models may be chosen if the current ones
are not predicting as accurate as expected. To decide for a new predic-
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tion model, it is necessary to estimate what is the most proper prediction
method, given the current environmental conditions, and if making pre-
dictions (instead of transmitting all measurements) will reduce the num-
ber of transmissions in the WSN. This analysis may be done either in
the GW or in sensor nodes and are fundamental to keep the predictions’
accuracy in a DPS.
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Appendix B

BACKGROUND ABOUT
FORECASTING METHODS

A time series (X) is a sequence of data points, typically consisting of
observations made over a time interval and ordered in time [100]. Each
observation is usually represented as xt, where the observed value x is
indexed by the time t at which it was made. In the literature about time
series forecasting [25, 100, 101], it is possible to find several examples
of prediction methods that use time series as input (a.k.a., forecasting
methods).

In this Appendix, we clarify a set of terms related to forecasting meth-
ods. Later, we explain and experiment the forecasting methods used in
WSN environments: naive approaches, the ES, the ARIMA and the ANN
methods.

Definitions

Forecasting method A forecasting method (F ) is a prediction method
for forecasts. It uses two input variables: a time series (X) and a set of
parameters (θ).
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Forecasting model A forecasting model (f ) is an instance of a fore-
casting method F , such that fθ(X) = F (X, θ). Forecasting models use
time series as input to predict future values, which are represented as
a function of the past observations and their respective time. That is,
(x̄t+1 . . . x̄t+i) = fθ(xt, . . . , xt−k), where x̄t+1 . . . x̄t+i are the forecasts
for the period between t+ 1 and t+ i.

Accuracy Accuracy measures are used to evaluate the quality of the
predicted values based on the difference between the prediction and the
observed value, i.e., the error et = xt − x̄t [25].

Information criteria Information criteria are measures used to estimate
the information loss if the time series is modeled by a set of parameters θ.
These criteria are useful to choose a prediction model: the estimated in-
formation loss is applied to infer the relative quality of the parameters and
to choose the best option given a set of candidates. That is, assuming that
the future data will have the same characteristics as the observations al-
ready made, the goal is to choose the set of parameters that will minimize
the information loss, which tends to improve the forecasts’ accuracy. In
some cases, the number of parameters is also taken into account, i.e., us-
ing fewer parameters may be considered an advantage, because it avoids
overfitting the training data.

Examples of information criterion measures are the AIC; the BIC;
and the AICc [102]. In our experiments, we adopted the AICc as the
information criterion to choose the most proper forecasting models.

Overview of Forecasting Methods
The methods used in this thesis are explained in detail in the literature
about forecasting methods [25], and their computing complexities are
summarized in Table B.1.

To illustrate each method, we ran a set of preliminary tests over the
Intel and the Ball datasets presented in Chapter 4. In our tests, we used
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Method Preprocessing
time complexity

Runtime
complexity

Space
complexity

Constant O(1) O(1) O(1)
Linear O(1) O(w) O(1)
SM O(h) O(1) O(1)
ES O(k3 h) O(w) O(1)
ARIMA(p, d, q) O(k3 h2) O((p+q)w) O(max(p, q+1))

Table B.1: List of forecasting methods and their complexities1.

100 values to forecast 5, 10, 20, and 30 values in the future, i.e., the history
length was 100, and the window length varied among 5, 10, 20, and 30.
We call as period the set of values observed before a forecast (history)
plus the predicted values (window).

To illustrate the accuracy in our tests, we adopted the RMSE as it is
a good indicator of accumulated errors, i.e., it provides a perspective of
the cumulative error when the number of predictions is increased. As the
RMSE is calculated as

RMSE(e) =

√√√√ 1

n

n∑
t=1

e2
t , (B.1)

the smaller values represent more accurate forecasts. The preliminary
tests’ RMSEs are shown in Tables B.2 and B.3, where the smallest errors
in each period are highlighted.

Naive approaches
Examples of naive approaches for forecasts may vary between calculat-
ing the average of the past observations, the maximum observed value or
assuming the same as the last observation made in time. Thanks to their
simplicity, they may become an attractive option for WSNs due to the

1ANNs are not included in Table B.1 because they are soft computing solutions that
cannot be bounded by a computational time limit [82, 83].
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Accuracy (RMSE)

Period Values
observed

Values
predicted Constant Linear SM ES ARIMA(3,0,3) ANN

#1 100 5 0.03 0.12 0.09 0.04 0.04 0.08
#2 100 10 0.23 0.1 0.82 0.28 0.27 0.88
#3 100 20 0.48 56.06 0.5 0.61 0.57 0.59
#4 100 30 0.3 44.85 0.52 0.09 0.14 0.46
#5 100 40 0.13 91.22 0.47 0.17 0.33 0.44
#6 100 50 0.27 7.84 0.42 0.35 0.2 0.35

Table B.2: Accuracy observed during the primary tests over the Intel dataset.

Accuracy (RMSE)

Period Values
observed

Values
predicted Constant Linear SM ES ARIMA(3,0,3) ANN

#1 100 5 0.45 2.58 14.23 0.64 1.49 4.26
#2 100 10 2.13 10.6 12.01 2.97 1.84 4.89
#3 100 20 7.81 4.14 5.63 5 2.78 9.75
#4 100 30 12.23 40.78 14.73 5.95 9.11 11.54

Table B.3: Accuracy observed during the primary tests over the Ball dataset.
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Figure B.1: Temperature forecasts using the Constant method has accept-
able results when the values do not undergo large variations.

sensor nodes’ computing power limitations, even though the predictions
are not as accurate as possible

Constant predictions

As the name suggests, a Constant prediction model assumes that no
changes will happen in the environment, and it always predicts that the
measurements in the future will be the same as it was in the most recent
observations, i.e., x̄t+i = xt [103].

Figure B.1 shows predictions over the Intel dataset using a Constant
model, where the predicted values are the same as the last value measured
by the sensor nodes. It is possible to observe that the Constant method
approximates better to the real values when the variance of the measure-
ments is lower, but it performs poorly when the values change abruptly.

As shown in Table B.1, its computation complexity is constant (and
low), which explains why they are often adopted in real sensor networks
when a transmission has been missed, or a measurement is not received
for any other reason.

111



0

25

50

75

100

1.0 1.5 2.0 2.5 3.0
Time (s)

O
bj

ec
t h

ei
gh

t (
m

)

actual observations predictions

Figure B.2: The Linear method assumes the object has a constant speed.

Linear method

Differently from the Constant, the Linear method assumes that the mea-
sured values may change in the future. Such changes, however, have a
linear component that does not vary in time. As an example, the height
of the ball is forecast as if its speed were constant in Figure B.2. That
is, the predictions were computed as x̄t+i = (xt − xt−1)i + xt. From the
plot, it is possible to observe that, even though the movements are very
intuitive from a human point of view, the noise in the measurements leads
to highly inaccurate predictions that ignore trends and physical laws.

Simple Mean method

As well as the Linear, the SM method predicts in constant time. The
method consists in calculating a simple average using the values observed
before. Thus, the SM requires longer preprocessing time than the Lin-
ear method to calculate the average between the last n observations. In
practice, at time t, it computes x̄t+i = 1

n

∑t
j=t−n xj . Figure B.3a shows

the predictions over the Intel and Ball datasets computed using the SM
method and shows that the predictions can be extremely inaccurate if the
data is varying or if there is a significant trend in the latest measurements.

112



22

23

24

25

26

09:00 12:00 15:00 18:00
Time of the day

Te
m

pe
ra

tu
re

 (º
C

)

actual observations predictions

(a) Temperature forecasts using the SM method assumes that the tem-
peratures may vary, but the average will be the same as the one observed
more recently.
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(b) Forecasting the object position using SM usually breaks the move-
ments’ continuity, which is unlikely to be observed in this case.

Figure B.3: SM models may often forecast unrealistic values.
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Exponential Smoothing method
In this method, the value predicted for the time t + i can be calculated
using only the most recent observation and the most recent forecast, i.e.,
in constant time, as shown in Table B.1. For instance, the value of x̄t is
the weighted average:

x̄t = αxt−1 + (1− α)x̄t−1 (B.2)

Guided by the value of α ∈ [0, 1] (also called smoothing constant), the
relevance of the old measurements undergo an exponential decay, which
justifies the method’s name. As shown in Figure B.4, the forecasts con-
verge slowly to average values and tend to follow the trends observed in
the measurements during a long period. In practice, they tend to have bet-
ter accuracy than the naive methods when forecasting longer periods, i.e.,
more than ten values.

Other formats of the ES are also widely used; they add up to two new
parameters (β and γ) to better detect non-linear trends. A common way
to set up good values for α, β and γ is by trying among k possible values
each (usually, k = 10). The choice can be made based on an informa-
tion criterion. It is important to highlight that adopting an information
criterion to choose the best set of parameters can noticeably increase the
complexity of the predictions because it requires more calculations and
comparisons in the preprocessing stage.

Autoregressive Integrated Moving Average method
An ARIMA model is a combination of an AR and a Moving Average
(MA) model. The ARIMA method considers, to calculate the forecasts,
the magnitude of the last observations and their trends (which is provided
by the AR model), and the impact of unobserved shocks that influenced
their current state (which is provided by the MA model). As the accuracy
of the AR and MA models is conditioned to the data stationarity, in the
case of observing a non-stationary distribution, an initial differentiating
step (corresponding to the “integrated” part of the model) can be applied.
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(a) ES models can capture recent trends and provide more accurate pre-
dictions even if the values are varying.
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(b) ES provides even more accurate predictions when the trends can be
easily observed.

Figure B.4: Forecasts using the ES method.
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The integration step is represented by the equation

yt = (1− L)dxt, (B.3)

where d is the order of the integrated model and L is the Lag operator,
such that Lkxt = xt−k for all t > k.

Finally, an ARIMA(p, d, q) model contains an AR model with order
p and an MA model with order q; and a value observed at time t can be
represented as

yt = c+ εt +

p∑
i=1

αiyt−i +

q∑
i=1

θiεt−i, (B.4)

where c is a constant. Note that it is used to predict the value of yt, which
is derived from xt, if d > 0, or simply equal to xt, if d = 0.

As well as the ES method, the parameters p, q and d are usually set
among k (usually, 0 ≤ k ≤ 6) possible values each, using an information
criterion measure. In comparison with the simplest methods (such as Lin-
ear and SM), ARIMA models can predict more accurately the new trends
observed in the latest observations, as shown in Figure B.5.

Special cases of ARIMA The ARIMA method has a particular char-
acteristic which is the overlapping with other methods. That is, some
ARIMA models are equivalent to models of other methods, for example:

• ARIMA(0, 1, 0) is equivalent to the Constant method;

• ARIMA(0, 2, 0) is equivalent to the Linear method;

• ARIMA(0, 0, 0) is the SM method;

• ARIMA(0, 1, 1) is the simplest model of the ES (with only one pa-
rameter); and

• ARIMA(0, 2, 2), ARIMA(0, 1, 2) and ARIMA(1, 1, 2) are equiva-
lent to more complex ES models.

Hence, when choosing the most proper ARIMA model using an informa-
tion criterion, some of the other methods are also implicitly considered.
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(a) Temperature forecasts using ARIMA models are more realistic and
accurate than the SM models (see Table B.2).
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(b) Object positions may not follow a stationary distribution, which may
reduce the accuracy of the predictions using ARIMA.

Figure B.5: Forecasts using ARIMA(3, 0, 3) models.
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Artificial Neural Networks
ANNs are targeted to create an artificial version of biological neurons [82,
83]. That is, they simulate a network of components (so-called neurons)
to predict the output of a system, given a set of inputs. To achieve that, an
ANN must go through a learning phase, i.e., it needs to adapt its internal
parameters and learn from available historical data until they converge to
the final values. However, differently from the other methods, the time
needed to set up the parameters of an ANN can drastically vary from
case to case, due to the high number of possible states. Moreover, the
convergence time (i.e., the time to find a set of proper parameters) may
tend to infinite, which explains why ANNs are soft computing solutions
that cannot be bounded by a computational time limit.

ANNs often perform better for long-term predictions than for smaller
intervals [104] and their accuracy is better than the traditional methods in
time series with discontinuities [105], which may happen in the case of
absence of parts of the data. However, their accuracy tends to be worse
when the number of values used to forecast is small, which was observed
in our primary tests, where the other methods always outperformed the
ANNs. Tables B.2 and B.3 shows the differences in their accuracies and
Figure B.6 illustrates their limitations to follow some trends.

118



22

23

24

25

26

09:00 12:00 15:00 18:00
Time of the day

Te
m

pe
ra

tu
re

 (º
C

)

actual observations predictions

(a) ANNs tend to perform poorly when few values are available during
the learning phase.
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(b) Predictions about the object movement are as accurate as those using
the simpler methods.

Figure B.6: Forecasts using ANNs.
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Appendix C

ON THE IMPORTANCE OF
REDUCING TRANSMISSIONS
IN WSNS

The number of wireless transmissions impacts directly the efficient use
of spectrum resources, which is one of the key challenges for the next
generation of wireless networks, such as Wireless Local Area Networks
(WLANs), 4G, 5G, and WSNs [17].

Predicting sensed data is a potential candidate to shorten the increase
in the number of WSN transmissions, which is reinforced by its presence
in real world sensor network applications. Assuming that sensor nodes
can communicate with neighbors within a maximum distance, the model
presented in Chapter 5 can be used to evaluate how the number of trans-
missions is affected when new sensor nodes are added to a WSN.

In this Appendix, we will model the impact of linear growth in WSNs’
radius and density, and estimate the maximum number of sensor nodes
that a WSN can accommodate, given hardware constraints of real wire-
less sensor nodes. In the following, we assume a monitoring WSN with
homogeneous sensor nodes periodically transmitting measurements every
1/f seconds in a payload of n bits.
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Radius growth
Let us suppose a WSN withD−1 rings and densityC+1, i.e., each sensor
node has an average of C neighbors, and there is a total of C(D − 1)2

sensor nodes. Based on (5.1), adding a new ring to this network represents
C(2D − 1) new sensor nodes in a total of CD2 nodes. Therefore, the
number of sensor nodes grows quadratically in terms of the number of
rings.

Recall that a transmission from a sensor node in ring d needs to be
forwarded d−1 times to reach the GW (summing d transmissions); more-
over, according to (5.1), a ring d has (2d− 1)C sensor nodes. Therefore,
all sensor nodes in ring d will trigger a total of (2d − 1)Cd node-to-GW
transmissions every 1/f seconds. Thus, summing this expression from
d = 0 to d = D gives us that the total number of transmissions in the
sensor network during a unit of time (i.e., 1/f seconds) is

D∑
d=0

Cd(2d− 1) =
4CD3 + 3CD2 − CD

6
. (C.1)

This equation shows that considering a linear growth in the number of
rings, the number of transmissions grows cubically.

Density growth
Similarly, considering the network with D rings and density C + 1 (i.e.,
CD2 sensor nodes), a linear increase in the sensor density represents D2

new nodes uniformly distributed and (C + 1)d(2d− 1)− Cd(2d− 1)
new transmissions per ring. Summing this expression from d = 0 to
d = D shows us that increasing the density of a sensor network by one
will trigger

D∑
d=0

(C + 1)d(2d− 1)− Cd(2d− 1) =
4CD3 + 3CD2 − CD

6
(C.2)
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new node-to-GW transmissions per unit of time (i.e., 1/f seconds).
In fact, the number of new transmissions calculated in (C.2) is the

same as the number of total transmissions in a network with radius D and
density C + 1 calculated in (C.1). Therefore, increasing the density of a
network by one will duplicate its number of transmissions.

Throughput vs. number of sensor nodes
Let us call the throughput of a sensor node as λ. If we consider that
each sensor node reports its measurements using unicast transmissions,
every 1/f seconds, a sensor node in the first ring will have to forward the
transmissions from all its children K1 = D2 − 1 besides transmitting its
measurement. Hence, it will requireD2 transmissions every 1/f seconds.

Minimum throughput
To avoid collisions, a sensor node i cannot transmit simultaneously to
any other sensor node in the range of 2 hops of distance, even if they are
not direct children of i. Considering i, there will exist 4C + 1 sensor
nodes in the range of 2 hops from it (i.e., CD2 = 4C, because D = 2,
plus i). Thus, assuming a fair MAC protocol in which each sensor node
transmits once per cycle, i cannot transmit more than λ/(n(4C + 1)) bits
per 1/f seconds. Such a maximum throughput would happen in a perfect
scenario where each sensor node can transmit coordinately at a time with
no control overhead.

Therefore, the necessary sensor nodes’ throughput (λ′) can be calcu-
lated in function of the disposition of the sensor nodes as

λ′

n(4C + 1)
≥ D2nf , (C.3)

and the minimum throughput (λmin) must be

λmin = D2n2f(4C + 1). (C.4)
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Realistic throughput
Unfortunately, in practice, wireless sensor nodes have throughputs that
differ considerably from their nominal transmission rates. Let us define
the realistic throughput of a wireless sensor node as the number of ap-
plication bits that can be transmitted using real hardware. The difference
between this value and the nominal transmission rate is due to hardware
delays to process and transmit data, and extra bits used to control the com-
munication in lower layers. For example, assuming a payload of 15 bytes
and considering the internal delays to prepare and transmit a packet, the
realistic throughput of TelosB and MicaZ motes are respectively 6313 and
17000 bps [106], even though both mote types have nominal transmission
rates of 250000 bps [36, 107].

Figure C.1a shows the minimum throughput for scenarios with dif-
ferent numbers of rings, densities and a sampling interval of five minutes
between consecutive measurements. Based on our model, we can affirm
that a WSN composed by TelosB motes can have more than four hops
only if it is a linear topology (i.e., C + 1 ∼ 3). Because of the low realis-
tic throughput of TelosB motes, a WSN cannot have more than 35 nodes,
if they are all transmitting once every five minutes with 15 bytes of pay-
load. If we assume the minimum nominal range of their radio transmitter
(20 meters), a homogeneous WSN with TelosB motes can have the maxi-
mum number of sensor nodes if it is arranged in four rings with a density
of four sensor nodes per 1300 meters2. In practice, such a WSN could
cover an area of two hectares.

On the other hand, MicaZ motes have a higher realistic throughput,
which impacts the maximum number of sensor nodes in a WSN. For in-
stance, it may be possible to deploy nearly 100 nodes with a density of
five nodes per 1300 meters2 arranged in four rings.

Finally, Figure C.1b shows that larger WSNs may be deployed if sen-
sor nodes are programmed to transmit once every 30 minutes. For exam-
ple, in this perfect scenario without control overhead, it would be possible
to arrange TelosB motes in 6 rings with a density of 6 nodes, i.e., a total
of 180 sensor nodes.
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(b) 1/f = 1800 seconds.

Figure C.1: The minimum required throughput for a WSN with sensor nodes transmitting packets with
15 bytes of payload.
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Appendix D

MINIMUM ACCURACY

Let us assume a monitoring WSN with homogeneous sensor nodes pe-
riodically transmitting measurements every 1/f seconds, and a sensor
node i in ring d. According to (5.6), the number of transmissions at i in
a period of 1/f seconds is the sum Si + Ri. If a DPS is adopted, the
number of transmissions will be S ′i + R′i + XDIS, as defined in (5.14).
Therefore, a DPS will reduce the number of transmissions during a period
T if and only if:

(S ′i +R′i)fT +XDIS ≤ (Si +Ri)fT . (D.1)

Thus, we can define αmin as the minimum average between the accu-
racies of the children of i that would reduce the number of transmissions
in a DPS (without aggregation). It must satisfy the following equation:

(S ′i +R′i)fT +XDIS = (Si +Ri)fT . (D.2)

Based on (5.4), (5.5), (5.15), and (5.16), we can calculate it as

((Kd + 1) αcmin + (Kd α
c
min))fT +XDIS = ((Ki,d + 1) +Kd)fT . (D.3)
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Knowing this, we can work out the equation:

((Kd + 1) αcmin + (Kd α
c
min))fT = ((Kd + 1) +Kd)fT −XDIS

αcmin(D
2 + (D2 − 1))fT = (D2 + (D2 − 1))fT −XDIS

αcmin(D
2 + (D2 − 1))fT = (D2 + (D2 − 1))fT −XDIS

αcmin =
(D2 + (D2 − 1))fT −XDIS

(D2 + (D2 − 1))fT

αcmin = 1− XDIS

(D2 + (D2 − 1))fT

αmin =
XDIS

(D2 + (D2 − 1))fT

αmin =
XDIS

(2D2 − 1)fT
.

(D.4)

Assuming no aggregation in the dissemination of prediction models,
the value of XDIS is defined by (5.10):

XDIS = S∗ +R∗ = (2D2 − 1). (D.5)

Therefore,
αmin = 1/fT . (D.6)
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Appendix E

DATA MODEL

A Normal distribution is characterized by its probability density function
whose pattern is often encountered in several types of observations. Ac-
cording to the Central Limit Theorem, the sampling distribution of the
mean of any independent random variable tends to be Normal, even if
the distribution from which the average is computed is decidedly non-
Normal. For example, it has been shown that environmental readings–
such as temperature, light, and humidity–done by outdoor WSNs can be
approximated to normal distributions if properly managed [51].

We will assume that a sensor network is composed of a set of sensor
nodes S and each sensor node i ∈ S is responsible for measuring a certain
parameter from the environment, such that the set of observations follows
a Normal distribution with mean µi and variance σ2

i . By convention, this
is represented as Yi = N(µi, σ

2
i ). A prediction ȳi (for example, ȳi = µi)

can be calculated by the sensor node i and the GW. We define the accepted
threshold εi, i.e., the prediction is told to be correct if the real observation
(yi) is in the interval [ȳi − εi, ȳi + εi].

Assuming that the data is normally distributed, the chances of observ-
ing a new value inside the accepted interval can be calculated by normal-
izing the value of εi, i.e., rewriting it in terms of the variance σ2

i . The
normalized value of εi is represented by zi as
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zi =
εi − ȳi
σi

. (E.1)

Thus, in this case, the accuracy of the predictions (αi) can be calculated
based on the cumulative distribution function of the normal distribution:

Φµ,σ(x) =
1

2

[
1 + erf

(
x− µ
σ
√

2

)]
. (E.2)

Again, according to the Central Limit Theorem, we assume unbiased
predictions and normally distributed errors. Therefore, the percentage of
observations that will fall outside the accepted interval is represented by
the two-tailed Z-test (i.e., 2Φ(−|zi|)), and αi is

αi = 1− 2Φ(−|zi|). (E.3)

By substituting (E.1) into (E.3), we can observe that

αi = 1− 2Φ

(
−
∣∣∣∣εi − ȳiσi

∣∣∣∣) , (E.4)

which shows that the accuracy of the predictions depends on the accepted
threshold, on the mean and on the variance of the data.
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Appendix F

PROOF OF 1− αX ≤ X (1− α)

Let us assume two values α and x such that α ∈ [0, 1] and x ≥ 1. We
want to show that 1− αx ≤ x (1− α):

1− αx ≤ x (1− α)

1− αx ≤ x− α x
−αx − 1+ ≤ x− α x

αx ≥ 1− x+ α x

αx ≥ 1 + x (α− 1)

(F.1)

When α = 0 or α = 1, we can easily observe that the affirmation is
true because x ≥ 1 by definition. For the other values of α, we can use
the Bernoulli’s inequality:

(1 + i)j ≥ 1 + ij, (F.2)

where i > −1, i 6= 0 is a real number and j ≥ 2, an integer value.
Substituting the values of α and x in (F.1) respectively by i+ 1 and j, the
claim is proved.
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[66] S. Santini and K. Römer, “An Adaptive Strategy for Quality-
Based Data Reduction in Wireless Sensor Networks,” in 3rd
International Conference on Networked Sensing Systems, 2006,
pp. 29 – 36. [Online]. Available: http://vs.inf.ethz.ch/publ/papers/
santinis inss2006.pdf

[67] I. Lazaridis and S. Mehrotra, “Capturing sensor-generated time
series with quality guarantees,” in Data Engineering, 2003.
Proceedings. 19th International Conference on, Mar. 2003,
pp. 429–440. [Online]. Available: http://ieeexplore.ieee.org/xpls/
abs all.jsp?arnumber=1260811

[68] B. R. Stojkoska, D. Solev, and D. Davcev, “Data prediction in WSN
using variable step size LMS algorithm,” in Proceedings of the
5th International Conference on Sensor Technologies and Appli-
cations, 2011.

[69] M. Wu, L. Tan, and N. Xiong, “Data prediction, compression, and
recovery in clustered wireless sensor networks for environmental
monitoring applications,” Information Sciences, vol. 329, pp.
800–818, 2016. [Online]. Available: http://dx.doi.org/10.1016/j.
ins.2015.10.004

[70] Y.-A. Le Borgne, S. Santini, and G. Bontempi, “Adaptive model
selection for time series prediction in wireless sensor networks,”
Signal Process., vol. 87, no. 12, pp. 3010–3020, Dec. 2007.
[Online]. Available: http://dx.doi.org/10.1016/j.sigpro.2007.05.
015

[71] G. Li and Y. Wang, “Automatic ARIMA modeling-based data
aggregation scheme in wireless sensor networks,” EURASIP
Journal on Wireless Communications and Networking, vol. 2013,
no. 1, p. 85, 2013. [Online]. Available: http://jwcn.eurasipjournals.
com/content/2013/1/85

143

https://arxiv.org/abs/1604.01275
http://vs.inf.ethz.ch/publ/papers/santinis_inss2006.pdf
http://vs.inf.ethz.ch/publ/papers/santinis_inss2006.pdf
http://ieeexplore.ieee.org/xpls/ abs_all.jsp?arnumber=1260811
http://ieeexplore.ieee.org/xpls/ abs_all.jsp?arnumber=1260811
http://dx.doi.org/10.1016/j.ins.2015.10.004
http://dx.doi.org/10.1016/j.ins.2015.10.004
http://dx.doi.org/10.1016/j.sigpro.2007.05.015
http://dx.doi.org/10.1016/j.sigpro.2007.05.015
http://jwcn.eurasipjournals.com/content/2013/1/85
http://jwcn.eurasipjournals.com/content/2013/1/85


[72] D. J. McCorrie, E. Gaura, K. Burnham, N. Poole, and R. Hazelden,
“Predictive data reduction in wireless sensor networks using
selective filtering for engine monitoring,” in Wireless Sensor and
Mobile Ad-Hoc Networks: Vehicular and Space Applications.
New York, NY: Springer New York, 2015, pp. 129–148. [Online].
Available: http://dx.doi.org/10.1007/978-1-4939-2468-4 6

[73] S. Goel and T. Imielinski, “Prediction-based monitoring in
sensor networks: taking lessons from MPEG,” ACM SIGCOMM
Computer Communication Review, vol. 1, 2001. [Online].
Available: http://dl.acm.org/citation.cfm?id=1037117

[74] C. Liu, K. Wu, and M. Tsao, “Energy efficient information
collection with the ARIMA model in wireless sensor networks,”
in IEEE Global Communications Conference, 2005, pp. 2470–
2474. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.
jsp?arnumber=1578206

[75] H. Jiang, S. Jin, and C. Wang, “Prediction or Not? An
Energy-Efficient Framework for Clustering-based Data Collection
in Wireless Sensor Networks,” IEEE Transactions on Communi-
cations, vol. 39, no. 12, pp. 1721–1725, 1991. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=5601711

[76] “Scale of measurement,” in Encyclopedia of Public Health,
W. Kirch, Ed. Dordrecht: Springer Netherlands, 2008,
pp. 1279–1279. [Online]. Available: http://dx.doi.org/10.1007/
978-1-4020-5614-7 3099

[77] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network
survey,” Computer Networks, vol. 52, no. 12, pp. 2292–2330, Aug.
2008. [Online]. Available: http://linkinghub.elsevier.com/retrieve/
pii/S1389128608001254

[78] J.-K. Min and C.-W. Chung, “EDGES: Efficient data gathering in
sensor networks using temporal and spatial correlations,” Journal

144

http://dx.doi.org/10.1007/978-1-4939-2468-4_6
http://dl.acm.org/citation.cfm?id=1037117
http://ieeexplore.ieee.org/xpls/ abs_all.jsp?arnumber=1578206
http://ieeexplore.ieee.org/xpls/ abs_all.jsp?arnumber=1578206
http://ieeexplore.ieee.org/xpls/ abs_all.jsp?arnumber=5601711
http://dx.doi.org/10.1007/978-1-4020-5614-7_3099
http://dx.doi.org/10.1007/978-1-4020-5614-7_3099
http://linkinghub.elsevier.com/retrieve/pii/ S1389128608001254
http://linkinghub.elsevier.com/retrieve/pii/ S1389128608001254


of Systems and Software, vol. 83, no. 2, pp. 271–282, Feb.
2010. [Online]. Available: http://linkinghub.elsevier.com/retrieve/
pii/S0164121209001964

[79] G. Barrenetxea, F. Ingelrest, G. Schaefer, M. Vetterli, O. Couach,
and M. Parlange, “SensorScope: Out-of-the-Box Environmental
Monitoring,” in 2008 International Conference on Information
Processing in Sensor Networks (ipsn 2008). IEEE, Apr. 2008,
pp. 332–343. [Online]. Available: http://ieeexplore.ieee.org/xpls/
abs all.jsp?arnumber=4505485

[80] S. Bhatti and J. Xu, “Survey of Target Tracking Protocols Using
Wireless Sensor Network,” 2009 Fifth International Conference
on Wireless and Mobile Communications, pp. 110–115, 2009.
[Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?
arnumber=5279476

[81] G. L. Baker and J. A. Blackburn, The pendulum: A case
study in physics. Oxford University Press, 2005. [On-
line]. Available: http://www.maa.org/publications/maa-reviews/
the-pendulum-a-case-study-in-physics

[82] A. K. Jain, J. Mao, and K. M. Mohiuddin, “Artificial neural
networks: a tutorial,” Computer, vol. 29, no. 3, pp. 31–44, Mar
1996. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.
jsp?arnumber=485891

[83] S. Haykin, Neural networks and learning machines. Pearson Up-
per Saddle River, NJ, USA:, 2009, vol. 3.

[84] Crossbow Technology Inc., MICA2DOT datasheet, 2002.
[Online]. Available: https://www.eol.ucar.edu/isf/facilities/isa/
internal/CrossBow/DataSheets/mica2dot.pdf

[85] Sensirion AG, Datasheet SHT1X, Dec. 2011. [On-
line]. Available: https://www.sparkfun.com/datasheets/Sensors/
SHT1x datasheet.pdf

145

http://linkinghub.elsevier.com/retrieve/pii/ S0164121209001964
http://linkinghub.elsevier.com/retrieve/pii/ S0164121209001964
http://ieeexplore.ieee.org/xpls/ abs_all.jsp?arnumber=4505485
http://ieeexplore.ieee.org/xpls/ abs_all.jsp?arnumber=4505485
http://ieeexplore.ieee.org/xpls/ abs_all.jsp?arnumber=5279476
http://ieeexplore.ieee.org/xpls/ abs_all.jsp?arnumber=5279476
http://www.maa.org/publications/maa-reviews/ the-pendulum-a-case-study-in-physics
http://www.maa.org/publications/maa-reviews/ the-pendulum-a-case-study-in-physics
http://ieeexplore.ieee.org/xpls/ abs_all.jsp?arnumber=485891
http://ieeexplore.ieee.org/xpls/ abs_all.jsp?arnumber=485891
https://www.eol.ucar.edu/isf/facilities/isa/internal/ CrossBow/DataSheets/mica2dot.pdf
https://www.eol.ucar.edu/isf/facilities/isa/internal/ CrossBow/DataSheets/mica2dot.pdf
https://www.sparkfun.com/datasheets/Sensors/ SHT1x_datasheet.pdf
https://www.sparkfun.com/datasheets/Sensors/ SHT1x_datasheet.pdf


[86] Crossbow Technology Inc., Wireless Sensor Networks Product Ref-
erence Guide, 2007.

[87] Shockfish SA, TinyNode 584 / Standard Extension Board, 2005.
[Online]. Available: http://www.btnode.ethz.ch/pub/uploads/
Projects/TinyNode Users Manual rev11.pdf

[88] Schmitt Industries Inc., AR3000 Distance Measurement Sensor,
2010. [Online]. Available: http://www.naic.edu/∼phil/hardware/lr/
accurange3000/ar3000-data-sheet.pdf

[89] G. Xu, GPS, 2nd ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2007, vol. 1. [Online]. Available: http://link.springer.
com/10.1007/978-3-540-72715-6

[90] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight
and flexible operating system for tiny networked sensors,” in
29th Annual IEEE International Conference on Local Computer
Networks. IEEE (Comput. Soc.), Nov. 2004, pp. 455–462.
[Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?
arnumber=1367266

[91] G. M. Dias, B. Bellalta, and S. Oechsner, “The impact of dual
prediction schemes on the reduction of the number of transmissions
in sensor networks,” in Computer Communications Journal, 2016.
[Online]. Available: https://arxiv.org/abs/1509.08778

[92] K. Langendoen and A. Meier, “Analyzing mac protocols for
low data-rate applications,” ACM Trans. Sen. Netw., vol. 7,
no. 2, pp. 19:1–19:40, Sep. 2010. [Online]. Available: http:
//doi.acm.org/10.1145/1824766.1824775

[93] J. S. Armstrong, Principles of forecasting: a handbook for
researchers and practitioners. Springer Science & Business
Media, 2001. [Online]. Available: https://www.gwern.net/docs/
predictions/2001-principlesforecasting.pdf

146

http://www.btnode.ethz.ch/pub/uploads/Projects/ TinyNode_Users_Manual_rev11.pdf
http://www.btnode.ethz.ch/pub/uploads/Projects/ TinyNode_Users_Manual_rev11.pdf
http://www.naic.edu/~phil/hardware/lr/accurange3000/ ar3000-data-sheet.pdf
http://www.naic.edu/~phil/hardware/lr/accurange3000/ ar3000-data-sheet.pdf
http://link.springer.com/10.1007/978-3-540-72715-6
http://link.springer.com/10.1007/978-3-540-72715-6
http://ieeexplore.ieee.org/xpls/ abs_all.jsp?arnumber=1367266
http://ieeexplore.ieee.org/xpls/ abs_all.jsp?arnumber=1367266
https://arxiv.org/abs/1509.08778
http://doi.acm.org/10.1145/1824766.1824775
http://doi.acm.org/10.1145/1824766.1824775
https://www.gwern.net/docs/predictions/ 2001-principlesforecasting.pdf
https://www.gwern.net/docs/predictions/ 2001-principlesforecasting.pdf


[94] A. Genz, “Comparison of Methods for the Computation
of Multivariate Normal Probabilities,” Computing Sciences
and Statistics, vol. 25, pp. 400 – 405, 1993. [Online].
Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.
1.1.33.9631&rep=rep1&type=pdf

[95] G. M. Dias, B. Bellalta, and S. Oechsner, “Predicting occupancy
trends in barcelona’s bicycle service stations using open data,” in
SAI Intelligent Systems Conference (IntelliSys), 2015, Nov 2015,
pp. 439–445. [Online]. Available: https://arxiv.org/abs/1505.03662

[96] N. H. Timm, Applied multivariate analysis, 2002. [Online].
Available: http://link.springer.com/content/pdf/10.1007/b98963.
pdf

[97] H. Akaike, “A new look at the statistical model identification,”
Automatic Control, IEEE Transactions on, 1974. [Online].
Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=
1100705

[98] G. Schwarz, “Estimating the dimension of a model,” The annals
of statistics, 1978. [Online]. Available: http://projecteuclid.org/
euclid.aos/1176344136

[99] R. J. Hyndman and A. B. Koehler, “Another look at measures
of forecast accuracy,” International Journal of Forecasting,
vol. 22, no. 4, pp. 679–688, Oct. 2006. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0169207006000239

[100] G. E. P. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time
Series Analysis: Forecasting and Control, 5th ed. John Wiley &
Sons, 2015.

[101] S. G. Makridakis, S. C. Wheelwright, and R. J. Hyndman, Fore-
casting: Methods and Applications, 3rd ed., 1998.

147

http://citeseerx.ist.psu.edu/viewdoc/ download?doi=10.1.1.33.9631&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/ download?doi=10.1.1.33.9631&rep=rep1&type=pdf
https://arxiv.org/abs/1505.03662
http://link.springer.com/content/pdf/10.1007/b98963.pdf
http://link.springer.com/content/pdf/10.1007/b98963.pdf
http://ieeexplore.ieee.org/xpls/ abs_all.jsp?arnumber=1100705
http://ieeexplore.ieee.org/xpls/ abs_all.jsp?arnumber=1100705
http://projecteuclid.org/euclid.aos/1176344136
http://projecteuclid.org/euclid.aos/1176344136
http://linkinghub.elsevier.com/retrieve/pii/ S0169207006000239


[102] R. J. Hyndman, A. B. Koehler, J. Ord, and R. D. Snyder, Fore-
casting with Exponential Smoothing: The State Space Approach,
2008.

[103] K. Chakrabarti, E. Keogh, S. Mehrotra, and M. Pazzani,
“Locally adaptive dimensionality reduction for indexing large
time series databases,” ACM Trans. Database Syst., vol. 27,
no. 2, pp. 188–228, Jun. 2002. [Online]. Available: http:
//doi.acm.org/10.1145/568518.568520

[104] S. Y. Kang, “An investigation of the use of feedforward neural net-
works for forecasting,” Ph.D. dissertation, Kent, OH, USA, 1992,
uMI Order No. GAX92-01899.

[105] W. R. Tim Hill, Marcus O’Connor, “Neural network models
for time series forecasts,” Management Science, vol. 42,
no. 7, pp. 1082–1092, 1996. [Online]. Available: http:
//www.jstor.org/stable/2634369

[106] C. Pham, “Communication performances of IEEE 802.15.4
wireless sensor motes for data-intensive applications: A
comparison of WaspMote, Arduino MEGA, TelosB, MicaZ
and iMote2 for image surveillance,” Journal of Network and
Computer Applications, vol. 46, pp. 48–59, 2014. [Online].
Available: http://dx.doi.org/10.1016/j.jnca.2014.08.002

[107] MEMSIC Inc., MICAz datasheet: 6020-0065-05 rev, San Jose,
CA, California, 2003.

148

http://doi.acm.org/10.1145/568518.568520
http://doi.acm.org/10.1145/568518.568520
http://www.jstor.org/stable/2634369
http://www.jstor.org/stable/2634369
http://dx.doi.org/10.1016/j.jnca.2014.08.002

	List of Figures
	List of Tables
	List of Acronyms
	List of Publications
	Introduction
	Objectives
	Contributions

	Cloud Empowered Self-managing WSNs
	A self-managing architecture
	Structure of the proposed architecture
	Main data flow

	Applications of the architecture
	Multi-scope Integration
	Sensing as a Service
	Prediction-based data reduction

	Experimental deployment
	Adopting a WSN manager
	Implementing the DAS-Dashboard
	Implementing the Data Analytics Server
	Benchmarking

	Summary

	Reinforcement Learning for Controlling Sensor Nodes
	Single Prediction Schemes with model generation in Gateways
	Topology control
	Clustering
	Adaptive sampling

	Adapting sampling intervals using a Reinforcement Learning algorithm
	Background - Reinforcement Learning
	Adaptive sampling interval problem as a Reinforcement Learning problem

	Simulations
	Synthetic scenarios with fixed expectations
	Synthetic scenarios with moving expectations
	Real world scenarios

	Experimental results
	Summary

	Efficiency of Dual Prediction Schemes
	Background - Prediction methods
	Background - Dual Prediction Schemes
	Independent model choice
	Model choice in sensor nodes
	Model choice in the Gateway

	Sensor network applications
	Monitoring applications
	Tracking applications

	Experimental results
	Parameter study
	Effectiveness of the forecasts

	Summary

	A Model for Dual Prediction Schemes
	A WSN transmission model
	Original model
	Model extension

	Modeling Dual Prediction Schemes
	Assumptions and limitations
	Prediction model choice and dissemination
	Impact of predictions in the number of transmissions
	Impact of predictions and aggregations

	Model experimentation
	Simulation setup
	Simulated algorithm
	Number of transmissions
	Energy consumption

	Summary

	Conclusion
	Appendix How to Choose Prediction Models in Dual Prediction Schemes?
	Appendix Background about forecasting methods
	Appendix On the Importance of Reducing Transmissions in WSNs
	Appendix Minimum accuracy
	Appendix Data model
	Appendix Proof of 1 - x x (1 - )
	Bibliography

